Registry
Module Specifications
Current Academic Year 2012 - 2013
Please note that this information is subject to change.
| |||||||||||||||||||||||||||||||||||||||||
| Description | |||||||||||||||||||||||||||||||||||||||||
|
The purpose of this module is to introduce the student to some of the latest ideas and algorithms from Modern Cryptology, and to equip the student to apply this theory to the problems of building secure computer applications, and securing communications in the context of the internet and e-commerce. Modern block ciphers and hash functions and their aplications are covered. Then, based on the students prior experience of elementary arithmetic, the basics of number theory are taught, as needed to fully understand the main algorithms for public-key cryptography, such as the RSA method. Students are expected to attend lectures, undertake assessments, and partake in homework and study. | |||||||||||||||||||||||||||||||||||||||||
| Learning Outcomes | |||||||||||||||||||||||||||||||||||||||||
|
1. Solve elementary problems in number theory relating to cryptography. 2. Understand contemporary private and public key encryption algorithms 3. Understand the techniques available for securing information in the context of the modern world. 4. To integrate cryptographic code into software projects. 5. Appreciate the basic threat models that need to be countered in secure systems, and how cryptography can help. | |||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||
| Indicative Content and Learning Activities | |||||||||||||||||||||||||||||||||||||||||
|
Classical methods. Caesar cipher. The one-time pad. Mechanical Rotor systems.. Symmetric cryptography. Block ciphers and their applications. Modes of operation. One-way hash functions and their aplications. The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES). Elementary Number theory. Fermat's theorem. Finite fields. Modular arithmetic. Fast algorithms for modular arithmetic.. Public Key Cryptography. The key distribution problem. The RSA method. Diffie-Hellman and El Gamal. The DSA digital signature. Identity based schemes.. Hard problems. One way functions. The integer factorisation problem, and the discrete logarithm problem.. Random number generation. Cryptographically secure random numbers and their generation. Using one-way hash functions. The BBS generator.. Smart Card Technology. Applications of smart cards. Side-channel attacks. Challenge-response systems. | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Indicative Reading List | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Other Resources | |||||||||||||||||||||||||||||||||||||||||
| None | |||||||||||||||||||||||||||||||||||||||||
| Array | |||||||||||||||||||||||||||||||||||||||||
| Programme or List of Programmes | |||||||||||||||||||||||||||||||||||||||||
| Timetable this semester: Timetable for | |||||||||||||||||||||||||||||||||||||||||
| Archives: |
| ||||||||||||||||||||||||||||||||||||||||









