Registry
Module Specifications
Current Academic Year 2012 - 2013
Please note that this information is subject to change.
| |||||||||||||||||||||||||||||||||||||||||
| Description | |||||||||||||||||||||||||||||||||||||||||
|
This module introduces computing students to quantum computing, including quantum cryptography. In quantum computing quantum bits (qubits) are used to solve certain problems much faster than otherwise possible, e.g. Shor's algorithm for factoring large numbers. Using qubits, key distribution in cryptography can be done in a way than can be proved to be secure.The course covers the principal known quantum algorithms and the main quantum based key distribution systems. Unlike quantum mechanics generally, only finite dimensional linear algebra is needed and this is developed in the course. The basic ideas of quantum mechanics are also outlined.Actual quantum computers have only been demonstrated on a small scale laboratory basis, but quantum cryptography products are already well advanced. Quantum computing is an area of great interest and intensive research, with huge potential. | |||||||||||||||||||||||||||||||||||||||||
| Learning Outcomes | |||||||||||||||||||||||||||||||||||||||||
|
1. Use linear algebra in a quantum computing context. 2. Describe the relevant aspects of the quantum world. 3. Understand the basic architecture of a quantum computing system. 4. Understand the principal known quantum computing techniques and algorithms. 5. Understand the principal quantum cryptography schemes | |||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||
| Indicative Content and Learning Activities | |||||||||||||||||||||||||||||||||||||||||
|
Introduction to Quantum Mechanics. States, superpositions of states, interference, entanglement, qubits, measurement, loss of determinism.. Linear algebra and quantum computing. Review of finite vector spaces over the complex numbers.Quantum computing and vector spaces. Bra-ket notation. Roles of unitary and Hermitian transformations, product spaces.. Architecture. Quantum computing analogues of logic gates. Algorithms. No cloning theorem. Teleportation. Superdense coding.Various quantum computing algorithms, including Shor's factoring algorithm.. Cryptography. Quantum key distribution schemes including BB92. | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Indicative Reading List | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Other Resources | |||||||||||||||||||||||||||||||||||||||||
| None | |||||||||||||||||||||||||||||||||||||||||
| Array | |||||||||||||||||||||||||||||||||||||||||
| Programme or List of Programmes | |||||||||||||||||||||||||||||||||||||||||
| CASE | BSc in Computer Applications (Sft.Eng.) | ||||||||||||||||||||||||||||||||||||||||
| Timetable this semester: Timetable for CA493 | |||||||||||||||||||||||||||||||||||||||||
| Archives: |
| ||||||||||||||||||||||||||||||||||||||||









