Registry
Module Specifications
Current Academic Year 2012 - 2013
Please note that this information is subject to change.
| |||||||||||||||||||||||||||||||||||||||||||||
| Description | |||||||||||||||||||||||||||||||||||||||||||||
|
This module aims to examine modern approaches to automatically identifying or verifying an individual based on one or more biometric traits, e.g. speech, DNA, fingerprints. It will cover all or most aspects of a biometric recognition from data acquisition through signal processing to pattern recognition. Students taking this model will already be able to program, have solid mathematical competence, and will have an interest in any or all of: biometrics, pattern recognition, signal processing. | |||||||||||||||||||||||||||||||||||||||||||||
| Learning Outcomes | |||||||||||||||||||||||||||||||||||||||||||||
|
1. Explain the operations and distinguishing features of elements of a biometric recognition system 2. Describe the primary techniques and technologies used in the common biometrics, e.g. speech, DNA, fingerprints 3. Use mathematics appropriate to biometric processing 4. Process novel data in algorithms used in biometric recognition systems 5. Evaluate the appropriateness of different biometric recognition technologies 6. Design and implement a biometric recognition system 7. Communicate experimental and design work in formal writing while citing the work of others which has contributed to the student's work | |||||||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||||||
| Indicative Content and Learning Activities | |||||||||||||||||||||||||||||||||||||||||||||
|
Generic mathematical techniques:. Review of probability, statistics, linear algebra.. Usage issues of biometric systems:. Benefits and risks; Costs; Privacy.. System architecture:. Data acquisition; Signal processing; Feature extraction; Enrollment - model/template creation; Recognition/Acceptance decisions.. Digital signal processing:. Time and space frequency-domain analysis; Feature extraction and preprocessing; Principal Component Analysis.. Pattern Recognition:. Probabilistic models and distance-based templates and metrics; Accuracy, false acceptance rates, false rejection rates; Various algorithms relating to - Dynamic Programming, Gaussian classifiers, Hidden Markov Models, Support Vector Machines, Sequence matching.. Overview of the primary biometrics:. Speech; Fingerprint; Face; Iris, DNA.. Other:. Signatures and key-strokes; Multifactor identification. | |||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||
| Indicative Reading List | |||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||
| Other Resources | |||||||||||||||||||||||||||||||||||||||||||||
| None | |||||||||||||||||||||||||||||||||||||||||||||
| Array | |||||||||||||||||||||||||||||||||||||||||||||
| Programme or List of Programmes | |||||||||||||||||||||||||||||||||||||||||||||
| MSSF | MSc in Security & Forensic Computing | ||||||||||||||||||||||||||||||||||||||||||||
| Timetable this semester: Timetable for CA641A | |||||||||||||||||||||||||||||||||||||||||||||
| Date of Last Revision | 25-AUG-11 | ||||||||||||||||||||||||||||||||||||||||||||
| Archives: |
| ||||||||||||||||||||||||||||||||||||||||||||









