Registry
Module Specifications
Current Academic Year 2012 - 2013
Please note that this information is subject to change.
| |||||||||||||||||||||||||||||||||||||||||
| Description | |||||||||||||||||||||||||||||||||||||||||
|
ACTIVE | |||||||||||||||||||||||||||||||||||||||||
| Learning Outcomes | |||||||||||||||||||||||||||||||||||||||||
|
1. Recognise the various roles mathematics and mathematical modelling in the context of bioinformatics. 2. Understand the advantages and disadvantages of various different types of models for real world problems. 3. Translate real world problem specifications into well-formed mathematical equations. 4. Recognise the roles of differential and difference equations for abstracting the details of problems from experts in different disciplines. | |||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||
| Indicative Content and Learning Activities | |||||||||||||||||||||||||||||||||||||||||
|
Introduction to Discrete Models of Growth and Decay. Revision of Underpinning Linear Algebra (eigenvalues, eigenvectors and meaning in this area, Stability in Difference Equations) Simple and Higher-Order Linear Difference Equations Applications (Fibonacci Series, Leslie Matrices) Non-linear Growth Models (logistic growth with additions, stability) Applications of Non-linear Models (Mendellian Genetics with various assumptions). Introduction to Continuous Models. More Mathematical Underpinning■ Differential Equations and their Simplification by Non-dimensionalisation,■ Stability in Continous models (Jacobians, steady states, Routh-Hurwitz conditions etc) Linear and Non-Linear continuous models comparing and contrasting with discrete models. Linear and Non-Linear Models of Interaction. Linear Compartmental Models with examples Non-Linear:■ More Mathematical Underpinning: Phase-Plane Plots■ Destructive to one party: Predator-Prey (RH conditions, phase plane analysis)■ Mutually Beneficial: Symbiosis (RH conditions, phase plane analysis)■ Mutually Destructive: Lanchester models of Guerrilla combat (RH conditions, phase plane analysis)■ More models of interaction: SIR, SIRS models of disease (RH conditions, phase plane analysis). | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Indicative Reading List | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Other Resources | |||||||||||||||||||||||||||||||||||||||||
| None | |||||||||||||||||||||||||||||||||||||||||
| Array | |||||||||||||||||||||||||||||||||||||||||
| Programme or List of Programmes | |||||||||||||||||||||||||||||||||||||||||
| CAPD | PhD | ||||||||||||||||||||||||||||||||||||||||
| MBIO | MSc in Bioinformatics | ||||||||||||||||||||||||||||||||||||||||
| Timetable this semester: Timetable for CA659 | |||||||||||||||||||||||||||||||||||||||||
| Date of Last Revision | 11-JAN-11 | ||||||||||||||||||||||||||||||||||||||||
| Archives: |
| ||||||||||||||||||||||||||||||||||||||||









