Registry

Module Specifications

Current Academic Year 2012 - 2013
Please note that this information is subject to change.

Module Title Data Analysis
Module Code CA660
School School of Computing
Online Module Resources

Module Co-ordinatorSemester 1: Heather Ruskin
Semester 2: Heather Ruskin
Autumn: Heather Ruskin
NFQ level 8 Credit Rating 7.5
Pre-requisite None
Co-requisite None
Compatibles None
Incompatibles None
Description
Aims to review and complement foundation statistical knowledge and to establish the context for a range of methods, used in the analysis of simple and complex systems. Reasonable proficiency in algebra and the ability to grasp concepts of probability and its importance are predominantly required. The emphasis is on an intuitive understanding of the principles and a practical ability to apply these to data examples drawn from diverse systems, rather than mathematical sophistication.

Learning Outcomes
1. 'demonstrate' that they understand different levels of measurement and data types
2. 'demonstrate' that they understand and apply underlying probability principles and distribution examples
3. 'demonstrate' that they can distinguish between descriptive and inferential statistical quantities in the theory and practice of statistics and in data analytics
4. 'demonstrate' that they appreciate the scope and robustness of common analytical methods for one to many samples
5. Use a range of analytical statistical techniques and interpret outcomes
6. Select appropriate statistical software, having been exposed to several examples; (options for practical work)
7. 'demonstrate' that they can apply techniques to a range of illustrative examples and case studies in complex bio- and other real-world systems



Workload Full-time hours per semester
Type Hours Description
Lecture36principles and methods
Tutorial12examples
Assignment56practical application/formal analysis
Independent learning time83.5reading, understanding, applying conceots and reviewing examples
Total Workload: 187.5

All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml

Indicative Content and Learning Activities
Review.
Basic Probability and nature of Statistical Investigations.

Probability distributions/Bayes and data handling.
Discrete and Continuous distributions and examplesConditional, joint Probability, data and Bayes.

Sampling distributions and Statistical Inference.
genration, interpretation, use and examples for data types.

Estimation and Hypothesis Testing.
One, two, many samples and principal analytical methods.

More on many samples.
Analytical methods for counts/proportions, means/variances and role of regression.

Principles of Non-parametrics.
less rigorous assumptions and distributional requirements.

Advanced methods.
experimental design and Multivariate - an outline.

Complex Systems Models & Analysis.
Problem-solving : blueprint/approach for real-world data analyticsIllustrative Examples/Case Studies from Biology,Env. Sci., Business & Finance.

Assessment Breakdown
Continuous Assessment25% Examination Weight75%
Course Work Breakdown
TypeDescription% of totalAssessment Date
AssignmentStudents wil be asked to formally assess and analyse a cae study/dataset and report on the required analyses and outcomes. Choice of software used will also be considered.25%Week 7
Reassessment Requirement
Resit arrangements are explained by the following categories;
1 = A resit is available for all components of the module
2 = No resit is available for 100% continuous assessment module
3 = No resit is available for the continuous assessment component
This module is category 3
Indicative Reading List
  • Crawley M.J.: 2005, Statistics: An Introduction Using R, Wiley-Blackwell, Chichester, West Sussex, England, 0470022981
  • Wheater C.P. and Cook P.A. ; illustrated by Wright J.: 2000, Using Statistics to understand the Environment, Routledge, 0415198887
  • Moore P.: 1997, Introductory Statistics for Environmentalists, (Environmental Management, Science & Technology), Ellis Horwood, 013128077
  • Gotelli N.J. , Ellison A.M.: 2004, A Primer of Ecological Statistics, Sinauer Associates Publishers, Sunderland, MA, 0878932690
  • Davenport T.H.and Harris J.G.: 2007, Competing on Analytics, Harvard Business School Press, Boston, Mass., 1422103323
  • Davenport T.H. and Harris J. G. and Morison R.: 2010, Analytics at Work: Smarter Decisions, Better Results, Harvard Business Press, 1422177696
  • Vose D.: 2008, Risk Analysis:A Quantitative Guide, Wiley & Sons, 0470512849
  • Savage S.L., with Danziger J.(Illustrator): 2009, The Flaw of Averages, Wiley & Sons, 0471381977
  • McKillup S.: 2011, Statistics Explained: An Introductory Guide for Life Scientists, Cambridge University Press, 0521183286
  • Ekstrom C.T., Sorensen H.: 2010, Introduction to Statistical Data Analysis for the Life Sciences, CRC Press, 1439825556
  • Draghici S.: 2012, An Introduction to Statistics and Data Analysis for Bioinformatics using R, Chapman & Hall/CRC, 1439892369
Other Resources
None
Other resources, such as specific articles and web sites will be provided as appropriate or required, e.g. for tutorial back up and for case study reading/assignment. These are not listed explicitly as will be selected from recent/most relevant.
Programme or List of Programmes
CAPDPhD
EEPDPhD
GDBINGraduate Diploma in Business Informatics
MBIOMSc in Bioinformatics
MEPDPhD
MEPTPhD-track
Timetable this semester: Timetable for CA660
Date of Last Revision24-AUG-11
Archives: