Registry
Module Specifications
Current Academic Year 2012 - 2013
Please note that this information is subject to change.
| |||||||||||||||||||||||||||||||||||||||||
| Description | |||||||||||||||||||||||||||||||||||||||||
|
Module Aims:(1) Introduce the importance of statistical analysis of analytical data.(2) Interpret data sets using statistical tests to (2.1) quantify data quality (2.2) compare sets of data (2.3) fit models to data sets(3) Apply computer packages (Excel/SPSS) to analysis of data sets.(4) To develop skills in the statistical analysis of real world analytical chemistry data through case studies(5) To develop an awareness of Total Quality Management in chemical industry(6) To independently perform a statistical analysis of a case study. | |||||||||||||||||||||||||||||||||||||||||
| Learning Outcomes | |||||||||||||||||||||||||||||||||||||||||
|
1. Critically analyse analytical data quality using appropriate tests 2. Perform fits to data including linear/non-linear regression and assess the quality of the fit 3. Evaluate and optimise the performance of a chemical process based on statistical analysis performed 4. Critically assess data sets based on applied inter-comparison tests | |||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||
| Indicative Content and Learning Activities | |||||||||||||||||||||||||||||||||||||||||
|
Indicative Syllabus. (1) Describing a set of data: mean, median, model, range, standard deviation, variance distributions including normal, binomial and Poisson. (2) Errors; relative and fixed bias, random errors, propagation of errors and accuracy. (3) Precision; comparing and combining standard deviations and means of data sets, limit of detection. (4) Linear regression and weighted linear regression; estimating concentration of unknowns from calibration lines; analysis of fit quality using residuals; reducing confidence interval of determination. (5) ANOVA. (6) Non-linear regression using theoretical models, polynomials and cubic splines.(7) Computer-based work to include application ofF andT tests, linear regression and non-linear curve fitting. (8) Chemometrics of optimisation (error minimisation, iterative approaches, applied to data modelling), experimental design and techniques for multidimensional data analysis and visualisation (e.g. PCR, PCA, DFA).. | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Indicative Reading List | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Other Resources | |||||||||||||||||||||||||||||||||||||||||
| None | |||||||||||||||||||||||||||||||||||||||||
| Array | |||||||||||||||||||||||||||||||||||||||||
| Programme or List of Programmes | |||||||||||||||||||||||||||||||||||||||||
| GCPA | GradDip Adv Chemical Pharmaceut Analysis | ||||||||||||||||||||||||||||||||||||||||
| MCPA | MSc Adv Chemical Pharmaceutical Analysis | ||||||||||||||||||||||||||||||||||||||||
| Timetable this semester: Timetable for CS507 | |||||||||||||||||||||||||||||||||||||||||
| Date of Last Revision | 29-OCT-10 | ||||||||||||||||||||||||||||||||||||||||
| Archives: |
| ||||||||||||||||||||||||||||||||||||||||









