Registry
Module Specifications
Current Academic Year 2012 - 2013
Please note that this information is subject to change.
| |||||||||||||||||||||||||||||||||||||||||
| Description | |||||||||||||||||||||||||||||||||||||||||
|
This module is to introduce students to the theory and practice of financial time series anaylsis. The emphasis is on the application of statistical methods to analyze financical time series data. Students will develop knowledge and skills in empirical features of financial time series data, applying relevant time series methods to analyze data, using appropriate statistical software to analyze data, critically evaluating empirical results reported in journal articles. Students will attend and participate in lectures, familiarize themselves with the use of statistical software, work on take home assignments that replicate some previous empirical research, critically evaluate some of the literature in financial econometrics. | |||||||||||||||||||||||||||||||||||||||||
| Learning Outcomes | |||||||||||||||||||||||||||||||||||||||||
|
1. Analyse financial time series data using appropriate statistical methods 2. Explain theoretical properties of financial time series models 3. Validate past empirical analyses published in academic journals 4. Present results of statistical analyses using appropriate statistical displays (e.g. tables and graphs) | |||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||
| Indicative Content and Learning Activities | |||||||||||||||||||||||||||||||||||||||||
|
Empirical characteristics of asset returns. autocorrelation, skew, kurtosis, time aggregation, volatility clustering, long memory, leverage, trading volume.. Volatility. nonparametric measurement, GARCH/GARCH-M models, forecasting, news impact curve, stochastic volatility, option implied volatility.. Ultra high frequency data. market microstructure, stylized facts, bid-ask bounce model (Roll 1984), irregularly spaced data, ACD models.. Realized variance. microstructure noise, sampling methods, jumps.. Statistics of extremes. extreme value theory, generalized extreme value distribution, threshold exceedance, generalized Pareto distribution.. | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Indicative Reading List | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Other Resources | |||||||||||||||||||||||||||||||||||||||||
| None | |||||||||||||||||||||||||||||||||||||||||
| Array | |||||||||||||||||||||||||||||||||||||||||
| Programme or List of Programmes | |||||||||||||||||||||||||||||||||||||||||
| MFCM | MSc in Finance | ||||||||||||||||||||||||||||||||||||||||
| PBSSA | PG Exchange(Business School) | ||||||||||||||||||||||||||||||||||||||||
| PBSSAO | PG Study Abroad(Business School) | ||||||||||||||||||||||||||||||||||||||||
| Timetable this semester: Timetable for EF586 | |||||||||||||||||||||||||||||||||||||||||
| Date of Last Revision | 26-MAY-09 | ||||||||||||||||||||||||||||||||||||||||
| Archives: |
| ||||||||||||||||||||||||||||||||||||||||









