Registry
Module Specifications
Current Academic Year 2012 - 2013
Please note that this information is subject to change.
| |||||||||||||||||||||||||||||||||||||||||
| Description | |||||||||||||||||||||||||||||||||||||||||
|
The purpose of this module is to introduce students to Linear Algebra. In this module students will gain a sound grasp of elementary linear algebra, and fundamental computational skills; it lays the foundations for further courses in linear algebra, calculus, probability and statistics. The module is aimed at students who have recently completed Leaving Certificate Honours Mathematics.The course is delivered through a combination of lectures, and tutorials facilitated by a tutor. | |||||||||||||||||||||||||||||||||||||||||
| Learning Outcomes | |||||||||||||||||||||||||||||||||||||||||
|
1. Demonstrate computational skills by solving wide range of drill problems involving matrices and vectors 2. State selected definitions and theorems in linear algebra 3. Solve exercises that test understanding of these definitions and theorems 4. Explain arguments used to prove selected theorems in special cases | |||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||
| Indicative Content and Learning Activities | |||||||||||||||||||||||||||||||||||||||||
|
Systems of linear equations and matrices. Matrices and matrix operations; Gaussian elimination; elementary matrices and Gauss-Jordan method forfinding inverse; diagonal, triangular and symmetric matrices; LU decompositions. Determinants. Determinants by cofactor expansion; evaluating determinants using row and column operations; properties of determinants. Vectors in two and three dimensions. Norms and inner products of vectors; vector products; lines and planes. Vector subspaces. Complex vectors; subspaces; linear independence; basis and dimension; row space, column space and null space; rank and nullity. Inner product spaces. standard inner products; Cauchy-Schwarz inequality; angle and orthogonality; orthonormal bases andGram-Schmidt procedure; orthogonal matrices; positive and negative definite matrices; least squaresapproximation. Eigenvalues and Eigenvectors. Eigenvalues and eigenvectors; diagonalisation; orthogonal diagonalisation of symmetric matrices. | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Indicative Reading List | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Other Resources | |||||||||||||||||||||||||||||||||||||||||
| None | |||||||||||||||||||||||||||||||||||||||||
| Array | |||||||||||||||||||||||||||||||||||||||||
| Programme or List of Programmes | |||||||||||||||||||||||||||||||||||||||||
| BSSA | Study Abroad (DCU Business School) | ||||||||||||||||||||||||||||||||||||||||
| BSSAO | Study Abroad (DCU Business School) | ||||||||||||||||||||||||||||||||||||||||
| ECSA | Study Abroad (Engineering & Computing) | ||||||||||||||||||||||||||||||||||||||||
| ECSAO | Study Abroad (Engineering & Computing) | ||||||||||||||||||||||||||||||||||||||||
| HMSA | Study Abroad (Humanities & Soc Science) | ||||||||||||||||||||||||||||||||||||||||
| HMSAO | Study Abroad (Humanities & Soc Science) | ||||||||||||||||||||||||||||||||||||||||
| SHSA | Study Abroad (Science & Health) | ||||||||||||||||||||||||||||||||||||||||
| SHSAO | Study Abroad (Science & Health) | ||||||||||||||||||||||||||||||||||||||||
| Timetable this semester: Timetable for MS106 | |||||||||||||||||||||||||||||||||||||||||
| Date of Last Revision | 23-SEP-11 | ||||||||||||||||||||||||||||||||||||||||
| Archives: |
| ||||||||||||||||||||||||||||||||||||||||









