Registry
Module Specifications
Current Academic Year 2012 - 2013
Please note that this information is subject to change.
| |||||||||||||||||||||||||||||||||||||||||
| Description | |||||||||||||||||||||||||||||||||||||||||
|
In this module students are introduced to the core subject of analysis that is required for other third and fourth year courses. The approach taken will encourage students to develop critical thinking and apply logical reasoning to mathemtical problems. Students will participate in the following learning activities: Lectures: Students will attend three one-hour lectures per week. These lectures are designed to introduce learners to the mathematical principles and problem solving techniques that underpin this module. Tutorials: Each student will attend one one-hour tutorial per week. Problem sheets based on lecture content are distributed to the students and they are strongly advised to attempt all tutorial questions in advance of the tutorial.Reading: Students are expected to fully utilise the textbooks recommended. | |||||||||||||||||||||||||||||||||||||||||
| Learning Outcomes | |||||||||||||||||||||||||||||||||||||||||
|
1. Define metric space and associated properties, and recognise these properties in specific examples. 2. Interpret concepts from analysis of a single real variable (convergence, continuity) in the context of metric spaces. 3. Define open and closed sets, and demonstrate an understanding of how they relate to continuity, etc.. 4. Explain important concepts such as compactness and completeness, recognise them in concrete examples, and use them to derive conclusions. | |||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||
| Indicative Content and Learning Activities | |||||||||||||||||||||||||||||||||||||||||
|
Introduction. Metric spaces, normed vector spaces, inner product spaces.. Continuity and Convergence. Open and closed sets, limit points, convergence, Cauchy sequences, continuity, uniform continuity, completeness,.. Banach Contraction Mapping Principle. Banach contraction mapping principle, applications to differential and integral equations, implicit function theorem.. Linear Operators. Linear operators, bounded linear operators on normed spaces, norms defined on bounded linear operators, invertible linear operators, applications to integral equations.. Compact Spaces. compact, sequentially compact and countably compact spaces, totally bounded spaces, maximum-minimum theorem.. Connectedness. Connected spaces, path-connectedness, intermediate-value theorem.. | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Indicative Reading List | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
| Other Resources | |||||||||||||||||||||||||||||||||||||||||
| None | |||||||||||||||||||||||||||||||||||||||||
| Array | |||||||||||||||||||||||||||||||||||||||||
| Programme or List of Programmes | |||||||||||||||||||||||||||||||||||||||||
| APM | B.Sc. Applicable Mathematics | ||||||||||||||||||||||||||||||||||||||||
| FM | BSc in Financial & Actuarial Mathematics | ||||||||||||||||||||||||||||||||||||||||
| Timetable this semester: Timetable for MS301 | |||||||||||||||||||||||||||||||||||||||||
| Date of Last Revision | 11-OCT-10 | ||||||||||||||||||||||||||||||||||||||||
| Archives: |
| ||||||||||||||||||||||||||||||||||||||||









