Registry

Module Specifications

Current Academic Year 2012 - 2013
Please note that this information is subject to change.

Module Title Probability and Finance II
Module Code MS408M
School School of Mathematics
Online Module Resources

Module Co-ordinatorSemester 1: John Appleby
Semester 2: John Appleby
Autumn: John Appleby
Module TeacherJohn Appleby
NFQ level 8 Credit Rating 0
Pre-requisite None
Co-requisite None
Compatibles None
Incompatibles None
Description
This module provides a thorough introduction to Brownian motion , stochastic calculus and their application to finance. It builds on Probability and Finance I in that it deals with the problem of extending to continuous time the ideas first encountered in a discrete-time set-up . The Black-Scholes model is covered in detail and particular emphasis is placed on learning to adapt it to new situations . This model building provides a "know-how and skill" element to a module which is otherwise mostly of "knowledge" type. The end of semester examination will be of three-hour duration and will require students to answer all questions on the paper .

Learning Outcomes
1. Demonstrate an understanding of the fundamental concepts of the theory of stochastic processes in discrete time through examples and counter-examples
2. Use the Optional Stopping Theorem to establish properties of various hitting times
3. Solve simple stochastic differential equations
4. Prove the basic results of utility theory and solve Merton's problem for CRRA utilities
5. Prove Girsanov's Theorem an apply it to selected problems in continuous-time finance
6. Derive the Black-Scholes formula and apply the method to a variety of extensions of the basic problem



Workload Full-time hours per semester
Type Hours Description
Lecture36No Description
Tutorial12No Description
Independent learning175No Description
Total Workload: 223

All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml

Indicative Content and Learning Activities
BROWNIAN MOTION.
provisional definition, specification of a stochastic process through its finite order distributions, Daniell-Kolmogorov theorem; versions, difficulty with continuity, completion of the probability space, Kolmogorov's continuity criterion,modification of a process; properties of Brownian motion: scaling, nowhere differentiability of sample paths..

MARTINGALES IN CONTINUOUS TIME.
filtrations, adaptedness, Brownian martingales;stopping times, optional stopping, hitting times..

ITO CALCULUS.
Ito integral for simple adapted processes; Ito integral as an isometry; Ito processes, Ito's lemma, stochastic differential equations..

OPTIMAL PORTFOLIO THEORY.
the stochastic differential equation of stock prices; utility, Merton's problem..

OPTION PRICING.
Girsanov's theorem and the equivalent martingale measure approach to option pricing; the arbitrage approach. Black - Scholes Formula and extensions..

Assessment Breakdown
Continuous Assessment25% Examination Weight75%
Course Work Breakdown
TypeDescription% of totalAssessment Date
In Class Testn/a25%Week 9
Reassessment Requirement
Resit arrangements are explained by the following categories;
1 = A resit is available for all components of the module
2 = No resit is available for 100% continuous assessment module
3 = No resit is available for the continuous assessment component
This module is category 3
Indicative Reading List
  • Lamberton, D., and Lapeyre, B.: 1996, Introduction to Stochastic Calculus with Financial Applications, Chapman and Hall, London,
  • Bjork, T.: 1998, Arbitrage Theory in Continuous Time, Oxford UP,
  • Etheridge, A.: 2003, A course in Financial Calculus, Oxford University Press,
Other Resources
None
Array
Programme or List of Programmes
MFMMSc in Financial Mathematics
Timetable this semester: Timetable for MS408M
Date of Last Revision18-JUN-08
Archives: