Registry
Module Specifications
Current Academic Year 2012 - 2013
Please note that this information is subject to change.
| |||||||||||||||||||||||||||||||||||||||||||||
| Description | |||||||||||||||||||||||||||||||||||||||||||||
|
The information age is characterised by enormous amounts of data generated as part of an ever-widening range of our day-to-day activities. This data can lead to better decision-making, insight, and advantage. The module aims to equip learners with a variety of Data visualisation techniques and the knowledge of a variety of tools and statistical techniques to make sense of the emergence and exponential growth of big data. The content of this module is delivered mainly through lecturers and in class demonstration. | |||||||||||||||||||||||||||||||||||||||||||||
| Learning Outcomes | |||||||||||||||||||||||||||||||||||||||||||||
|
1. Explain Data Analytics, the emergence of big data and how organisations can make use of them. 2. Understand different Data Visualisation Techniques and explain the benefits and limitations of different techniques. 3. Use the CRISP-DM Methodology of Data Mining. 4. Understand advanced analytics, statistical modelling techniques and contrast them for different types of problems. 5. Allocate appropriate tools to analyse a complex business-related issue | |||||||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||||||
| Indicative Content and Learning Activities | |||||||||||||||||||||||||||||||||||||||||||||
|
Introduction to Data Analytics and Visualisation. - What is Data Analytics? Growth of Big Data. Data Analytics usage in organisations. Barriers to using Big Data.. Data Visualisation. - Data Quality/Data Capture, Functions of Visualisations, Graphic Integrity, Data-Ink Ratio, Tables & Graphs, Multiple Datasets, Interactive Graphs. CRISP-DM Methodology. - Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation. Tools. - Statistical Software, Data Programming, Databases & languages, Business Intelligence Tools. Advanced Analytics and Statistical Modelling. - Basic and Advanced Statistical Tests, Linear and Logistic Regression, Clustering Techniques, Decision Trees, Time Series Analysis, Text Analysis, Survival Analysis. More Advanced Tools & Techniques. -EDA (Exploratory Data Analysis), Neural Networks, Machine Learning, Support Vector Machines (SVMs), Principal Component Analysis (PCA), K-Means Clustering, NoSQL, Apache Hadoop, Map Reduce,. | |||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||
| Indicative Reading List | |||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||
| Other Resources | |||||||||||||||||||||||||||||||||||||||||||||
| 7145, Journal: Business Intelligence Journal., 0, | |||||||||||||||||||||||||||||||||||||||||||||
| Array | |||||||||||||||||||||||||||||||||||||||||||||
| Programme or List of Programmes | |||||||||||||||||||||||||||||||||||||||||||||
| CDM | Graduate Cert in Digital Marketing | ||||||||||||||||||||||||||||||||||||||||||||
| IFPBM | PG Int. Foundation Prog.: Business Mgt. | ||||||||||||||||||||||||||||||||||||||||||||
| IFPSBM | Pre-Masters Intl. Foun. Prog. SS Bus.Man | ||||||||||||||||||||||||||||||||||||||||||||
| MIN | MSc International Management | ||||||||||||||||||||||||||||||||||||||||||||
| MSBM | MSc in Management (Business) | ||||||||||||||||||||||||||||||||||||||||||||
| MSCM | MSc in Mgmt (Cloud Computing & Commerce) | ||||||||||||||||||||||||||||||||||||||||||||
| MSDM | MSc in Management (Digital Marketing) | ||||||||||||||||||||||||||||||||||||||||||||
| MSSM | MSc in Management (Strategy) | ||||||||||||||||||||||||||||||||||||||||||||
| Timetable this semester: Timetable for MT5000 | |||||||||||||||||||||||||||||||||||||||||||||
| Archives: |
| ||||||||||||||||||||||||||||||||||||||||||||









