New Nuclear—The Promise of Fusion

Miles Turner

National Centre for Plasma Science and Technology Dublin City University

Negotiating New Sciences in Society Dublin City University, 22-23 January 2009

Agenda

- What is nuclear fusion?
- Why is nuclear fusion a desirable energy source?
- Why don't we use fusion energy today?
- When will we be able to produce energy from fusion?

Nuclear Energy

H	Periodic Table of the Elements													He			
Li ³	Be	 hydrogen alkali metals alkali earth metals 						 poor metals nonmetals noble gases 					C	N ⁷	08	F	10 Ne
Na Na	12 Mg	📕 transition metals 🛛 🔳 rare earth metals									AI	14 Si	15 P	16 S	17 Cl	Ar	
19 K	Ca ²⁰	SC ²¹	Ti ²²	V ²³	Cr ²⁴	25 Mn	Fe ²⁶	C0	28 Ni	Cu ²⁹	Zn 30	Ga ³¹	Ge ³²	As	se Se	35 Br	36 Kr
Rb ³⁷	³⁸ Sr	39 Y	Zr ⁴⁰	Nb	42 Mo	43 TC	Ru Ru	Rh ⁴⁵	Pd Pd	Ag	Cd	49 In	50 Sn	Sb	Te ⁵²	53 	Xe
Cs	Ba	57 La	Hf	Ta	W ⁷⁴	Re Re	OS OS	Ir 77	Pt 78	79 Au	Hg	81 Ti	82 Pb	83 Bi	84 Po	At 85	Rn
87 Fr	Ra Ra	AC	Unq	105 Unp	Unh	107 Uns	108 Uno	Une	Unn								

Ce 58	⁵⁹ Pr	Nd	Pm	62 Sm	Eu 63	Gd ⁶⁴	Tb ⁶⁵	66 Dy	67 Ho	Er	Tm	Yb ⁷⁰	71 Lu
90 Th	91 Pa	92 U	93 Np	94 Pu	Am	96 Cm	97 Bk	98 Cf	Es ⁹⁹	100 Fm	101 Md	102 No	103 Lr

- The most stable elements are in mid-table (Iron)
- More stable = Less energy
- Therefore, energy can be released in two ways:
 - 1. Combining light nucleii to make heavier ones (fusion) $\frac{1}{1}H + \frac{1}{1}H \rightarrow \frac{2}{1}H + e^{+} + \nu_{e} + 0.42 \text{ MeV}$

2. Splitting heavy nucleii to make lighter ones (fission) $n + {}^{235}_{92}\text{U} \rightarrow {}^{89}_{36}\text{Kr} + {}^{144}_{56}\text{Ba} + 3n + 177 \text{ MeV}$

Promise of Fusion Energy

- Fuel is abundant (water)
- Waste products are harmless
- Dangerous accidents are unlikely
- Practically unlimited scaling

Practice

• The only practical reaction is:

$$^{2}_{1}\text{D} + ^{3}_{1}\text{T} \rightarrow ^{2}_{2}\text{He} + n + 18 \text{ MeV}$$

with the auxiliary process

$$n + {}^6_3\text{Li} \rightarrow {}^3_1\text{T} + {}^2_2\text{He}$$

- So the fuels are Li and D
- \bullet But small amounts of T must be handled
- And neutrons are a problem

Problems

- 1. Producing the conditions for fusion (e.g. temperature of 10 000 000 K)
- 2. Tritium management (producing enough to sustain a closed cycle reactor, avoiding accumulation)
- 3. Avoiding reactor activation (by fast neutrons)

Present Status: Conditions for Fusion

Present Status: Conditions for Fusion

Present Status

- We know how to produce the conditions for fusion (Relatively modest extrapolation from JET)
- There is a clear concept for closed-cycle tritium management (Based on experience with JET)
- Work has hardly started on the materials issues

(No relevant experimental facilities)

What next? Iter

- International consortium
- Located in France
- Addressing:
 - 1. Conditions for fusion
 - 2. Tritium management
- Operating by 2018

Future Programme

- Iter experimental programme should conclude about 2030
- IFMIF (materials experiment) begins construction (in Japan) shortly
- Iter and IFMIF will inform DEMO (prototype commercial reactor)
- DEMO commissioned about 2040
- Large scale commercial exploitation thereafter

Conclusion

- Fusion energy has compelling advantages
- Technicalities are difficult, but probably surmountable
- Problems:
 - 1. Final cost is unknown
 - 2. May be too late (and is difficult to accelerate)
 - 3. Very complex programme