

Assessment for Learning: Resources for First Year Undergraduate Mathematics Modules

Caitríona Ní Shé, PhD Student (DCU and MU)

Project Team

Sinéad Breen, St. Patricks Drumcondra Frank Doheny Athlone, Institute of Technology Fiona Lawless Dundalk, Institute of Technology Eabhnat Ni Fhloinn, Dublin City university Brien Nolan, Dublin City University Conor Brennan, Dublin City University Ciarán Mac an Bhaird, Maynooth University Seamus McLoone, Maynooth University Christine Kelly, Maynooth University Ann O'Shea, Maynooth University

nstitiúid Teicneolaíochta

Project Funding

Funded by National Forum for the Enhancement of Teaching and Learning

- Teaching and Learning Enhancement Call 2014 (Building Digital Capacity)
- January 2015 December 2016
- More Information [1]

The next 14 minutes....

- 1. Our Project
- 2. Developed Resources
- 3. Trials and Evaluations
 - •Which resources trialled where
 - Evaluation methodology
 - Two specific evaluations

Assessment for Learning: Resources for First Year Undergraduate Mathematics Modules

- give students opportunities to develop their understanding of mathematics
- the design and creation of two types of technology enhanced formative assessment resources for use in mathematics modules

Two types of resources

- Technology enhanced resources (outside class)
 - A suite of interactive tasks
 - Khan Academy Playlists
 - Online 'lessons' designed in Moodle
 - Student screencasts
 - A web inventory of useful existing resources
- Technology Enhanced Audience Response System (in class)
 - UniDoodle

1st phase – student and lecturer questionnaires Spring 2015

Topics

- Algebraic Manipulation
- Logs
- Limits
- Functions
- Calculus

Resources

- Paper Based (current)
- Websites and Videos (request)
- Own pace & 'pause and rewind'
- Examples and solutions relating to 'real life' or student course

2nd Phase- Trials during 2015/2016

Formative assessment resources	Institutions where trialled
Interactive Tasks (Geogebra)	MU
Khan Academy Playlists	DCU and DkIT
Moodle Lessons	AIT
UniDoodle	MU and DCU
Student screencasts	DkIT

Khan Academy Playlists

- Available via Moodle as a playlist
- Links to videos and quizzes within Khan Academy
- All topics covered

DCU Implementation

Interactive Task Geogebra:

1) Is this function 1-1? Explain your answer.

2) Are there any intervals for which f(x) is 1-1?

3) Is this function onto? Explain why.

Graph of f(x)

Lessons

oncept

sponse

EInteractive

UniDoodle

- Students use their own phone or tablet
- Lecturers use a tablet and connect to ohp
- Question templates can be preloaded
- Graphing facility for students
- Lecturer selects which answer to display

Moodle Lessons

What are Quadratic functions?

Screencast on Quadratic functions video/mp4

Geogebra graph of a quadratic function

Linear Equations

Linear Equations

Introduction to Differentiation

This section introduces learners to differentiation. A lesson introduces the concept and details the rules of differentiation. The quiz can be taken as a self-assessment to test your knowledge of the topic.

Evaluation of Resources

Mathematics Education Research

 ... to understand mathematical thinking and the ways of teaching and learning

Technology Learning Evaluation Framework

- Utility & Usability
- Learning experience
- Linking formal and informal learning

AND

[2]

 to use this to improve teaching and learning

Mixed methodology to gather the data

Quantitative

- Exams or tests
- Written questions or tasks
- Quizzes
- Usage
- Questionnaires (ask the students!)

Qualitative

- Task Based Interviews (Think Aloud)
- Interviews (focus group)
- Interviews (lecturers)
- Questionnaires (ask the students!)

Triangulation [4]

Developing the questionnaire

- Based on Likert scale questionnaires from similar projects
- 5 main dimensions
 - Mathematical Confidence (before and after)
 - Engagement with the resources
 - Learning from the resource (student view)
 - Usability (how easy/difficult was it to use)
 - Background (HL or OL, gender)
 - Open Questions (some targeted)

Student Survey – tailored Likert scale questionnaires

Dimension	Full	Shorter	
	Questionnaire	Format	
	(48 items)	Questionnaire	
		(29 items)	
Confidence when learning	7	5	
mathematics	,	J	
Impact on Engagement	8	8	
Impact on learning	15	10	
Usability	12	2	
Student background data	5	3	
Open Question	1	1	

Assessment for Learning: Resources for first year undergraduate Mathematics modules

What did we find out?

Students who used the resources are positive and their mathematical confidence increased

- Anonymity and engagement in UniDoodle
- Revision for Moodle Lessons
- Sliders in Geogebra
- Quizzes in KA

Engagement was low and initial survey too long (DkIT)

- Purpose not always clear (Geogebra tasks)
- Didn't need it (KA)
- Pen size in UniDoodle

Assessment Conceptsesses Formative During Resonance Formative During Resonance Apps

Other Evaluations

- •Usage statistics
- Diagnostic test results
- Module grades
- •Quiz as part of CA
- Interviews

Overall set of evaluations.... Next slide

Resource	Student Questionnaire	Number of Responses	Other data	Other
Interactive Tasks (MU & DCU)	14 q's Online	46 Students (10% of cohort)	Usage	Task based think aloud (5 students)
Khan Playlists and Mastery Challenges (DkIT)	Semester 1 48 q's Paper based	115 (65% of cohort)	Usage & DT's and module grades	Student Focus Group Interview September 2016
	Semester 2 29 q's Paper based	37 (52% of cohort)		
Khan Playlists (DCU)	2 part (13 q's) Paper based	1 st Part 108 (<50%) 2 nd part 34	Usage	
Moodle Lessons (AIT)	29 q's online	12 (46%)	Usage & Quiz	
UniDoodle (MU & DCU)	42 q's Paper based	110 (<50%)	Pre and Post Autumn	Lecturer Interviewed

DkIT – 2nd phase implementation

- Khan Academy Mastery Challenges (embedded)
 - 10% of the grade
- Recommended by lecturer (approx. 3 sets per semester)
- Lecturer can see usage and grades
- Lecturer can adjust teaching accordingly
- Link to DKIT Khan Mastery Challenges

DkIT Evaluation of Khan Academy

Interactive Task Further Evaluation

- Do the Interactive tasks really work?
 - Misconceptions
 - Understanding
 - Wording
- How to encourage greater use?
 - Purpose
 - Ease of use
 - Inputting functions (most used)

Think Aloud Task Based interviews

Think Aloud

- What goes on inside the students head?
 - Verbal Analysis
 - Protocol Analysis
- Talking and thinking can be difficult!

Tasks should be

- Accessible
- Rich Representational Structure
- Free problem solving
- Explicit criteria for major contingencies
- Interaction with learning environment

[7,8]

[9]

- Example Generation
- Conjecturing/Generalising
- Visualisation
- Evaluating Mathematical Statements

[10]

Structure of the interview

- Pre test on Functions
 - Written artefact
- •Series of interactive Geogebra tasks
 - Vertical Line Test, discovering patterns and relationships
 - Sliders to change value of a in a.f(x), conjecture

Post Test

Changes to initial answer

Recording the data

Student View

Assessment for Learning: Resources for first year undergraduate Mathematics modules

Student Comfort!

Retake!

Assessment for Learning: Resources for first year undergraduate Mathematics modules

What have we found out?

Not new:

- 'I learnt this off from leaving cert, I should remember this'
- Silences for high cognitive load

Language

• 'ahm the point at which f of x.....oh what's the word for it when it ah goes from negative to positive put it that way ahm'

Learning

- Using the slider (talking & facial expressions)
- 'there would always be two points of intersection..oh ah there is only one point of intersection ahm'
- Revise answers (correctly) after (echo pen recording)

Next Steps

- Inform further development
 - DkIT Khan Academy Mastery Challenge
 - Reduce CA elements
- Interactive Tasks Inform for the In-depth analysis
 - 59% found the sliders useful
 - purpose and objective not clear
 - Clearer instructions on the Geogebra itself
- UniDoodle Fine tune for further dissemination
 - 'It's more fun than a normal lecture, gets you more involved.' Student 46
 - 'could make size of pencil ink even smaller' Student 4
 - Lecturer 'time consuming to prepare'

Think Aloud---interview process

- •All one package for the PC
 - Video
 - Echo Pen
 - Audio
 - Screen
 - Mouse
 - Keyboard

Currently Under Development

Did I cover the 3 points?

Go raibh maith agaibh

Assessment for Learning: Resources for first year undergraduate Mathematics modules

References

[1] NFETL: <u>http://www.teachingandlearning.ie/10-landing-page-style/supporting-transition-enhancing-feedback-first-year-using-digital-technologies/</u>

[2] Schoenfeld, A. (2002). Research methods in (mathematics) education. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 435–487). New Jersey: Lawrence Erlbaum.

[3] Giasemi Vavoula, Mike Sharples. Meeting the Challenges in Evaluating Mobile Learning: a 3-level Evaluation Framework. International journal of mobile and blended learning, 2009, 1,2, pp.54-75.

[4] McKnight, Curtis C. Mathematics education research: A guide for the research mathematician. American Mathematical Soc., 2000.

[5] Zaharias, P. & Poylymenakou, A. 2009, "Developing a usability evaluation method for e-learning applications: Beyond functional usability", Intl.Journal of Human–Computer Interaction, vol. 25, no. 1, pp. 75-98.

6] Richardson, Alice M., et al. "CRiSP: an instrument for assessing student perceptions of classroom response systems." *Journal of Science Education and Technology* 24.4 (2015): 432-447.

References [7] Nielsen, Janni, Torkil Clemmensen, and Carsten Yssi access to what goes on in people's heads?: reflections on the aloud technique."*Proceedings of the second Nordic conference on Human-computer interaction*. ACM, 2002.

Kesponse

[8] Leighton, J. Protocol and Verbal Analysis Paper presented for symposium How to Build a Cognitive Model for Educational Assessments at the 2009 annual meeting of the National Council on Measurement in Education (NCME), April 14-16, San Diego, CA.

[9] Goldin, G. A. (1997). Chapter 4: Observing mathematical problem solving through task-based interviews. *Journal for Research in Mathematics Education.Monograph*, , 40-177.

[10] Breen, S. and O'Shea, A. (2011). Designing rich sets of tasks for undergraduate calculus courses. In Dooley, T., Corcoran, D. and Ryan, M. (Eds) Proceedings of the Fourth Conference on Research in Mathematics Education MEI4, Dublin, 82-92.