<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. Fluids</td>
</tr>
<tr>
<td>5. Flow Control</td>
</tr>
<tr>
<td>7. Sensors</td>
</tr>
<tr>
<td>8. Ink-Jet Technology</td>
</tr>
</tbody>
</table>
2. Fluids

2.1. General Characteristics
2.2. Dispersions
2.3. Thermodynamics
2.4. Transport Phenomena
2.5. Solutions
2.6. Surface Tension
2.7. Electrical Properties
2.8. Optical Properties
2.9. Biological Fluids
2.4. Transport Phenomena

2.4.1. Diffusion

2.4.2. Viscosity

2.4.3. Transport of Heat

2.4.4. Characteristic Numbers
2.4 Summary of Phenomenological Laws

- Transport processes
 - Arbitrary thermal motion on molecular level
 - Driven by gradients (inhomogeneities)
 - Mostly linear relationship

\[
\text{Flow} = \text{coefficient} \times \text{force}
\]

<table>
<thead>
<tr>
<th>effect</th>
<th>transported</th>
<th>gradient</th>
<th>coefficient</th>
<th>law</th>
</tr>
</thead>
<tbody>
<tr>
<td>diffusion</td>
<td>(N)</td>
<td>(\frac{dN}{dz})</td>
<td>(D \approx \frac{1}{3} \rho v_T l_{mfp}) (diffusion coeff.)</td>
<td>(j_N = -D \nabla N) (Fick)</td>
</tr>
<tr>
<td>viscosity</td>
<td>(mv_z)</td>
<td>(m \frac{dv_z}{dx})</td>
<td>(\eta \approx \frac{1}{3} \rho v_T l_{mfp}) (viscosity)</td>
<td>(j_{p,x} = -\eta \frac{dv_z}{dx}) (Newton)</td>
</tr>
<tr>
<td>conduction of heat</td>
<td>(Q)</td>
<td>(\rho C_m \frac{dT}{dz})</td>
<td>(\lambda \approx \frac{1}{3} \rho C_m v_T l_{mfp}) (therm. conduct.)</td>
<td>(j_Q = -\lambda \nabla T) (Fourier)</td>
</tr>
<tr>
<td>electric conductivity</td>
<td>(q)</td>
<td>(-\frac{d\phi}{dz} = E_z)</td>
<td>(\sigma_E \approx \frac{q q^2 l_{mfp}}{m v_T}) (electr. conduct.)</td>
<td>(j_q = -\sigma E \nabla \phi) (Ohm)</td>
</tr>
</tbody>
</table>

Table 2.1. Summary of phenomenological laws of transport and coefficients calculated for ideal gases. For the viscosity, the \(z\)-direction delineates the direction of flow and \(x\) the transversal axis.
2.4.1. Diffusion

• Diffusion
 - Counteracts nonuniform particle densities
 - Thermal „Brownian“ motion
 - Process underlying all other transport phenomena in fluids

• Fick‘s first law

\[
j_N = -D \nabla q_N
\]

- Current density \(j_N \) antiparallel to gradient
- Systems seeks homogeneity
- Diffusion coefficient \(D \) [\(m^2 \) s\(^{-1}\)]
2.4.1. Diffusion

- Fick‘s second law
 - Time domain
 - Fixed location

\[
\frac{\partial \rho_N}{\partial t} = D \Delta \rho_N
\]

- Combining Fick‘s first law and equation of continuity

\[
\frac{\partial \rho_N}{\partial t} = -\nabla \cdot j_N
\]

- Laplace equation

\[
\Delta \rho_N = 0
\]

 - Stationary conditions
2.4.1 Molecular Picture

• Derivation of diffusion constant D

• Flow through surface z_1
 - Between two planes with diverging particle densities
 - Distance = mean free path l_{mfp}
 - Particles reach plane without collisions (statistically)

![Net flow through surface located at $z = z_1$](image)

\[j_{N,z} = j_{N,+z} - j_{N,-z} = \frac{1}{2} [\rho_N(z - l_{\text{mfp}}) - \rho_N(z + l_{\text{mfp}})] \bar{v}_z \]

\[j_{N,z} \approx - \frac{d\rho_N}{dz} \bar{v}_z l_{\text{mfp},z} \]

- Linear term of Taylor expansion

\[j_N = -D \nabla \rho_N \]
2.4.1 Diffusion coefficient

- Calculation of diffusion coefficient
 - Assumption: uniformly distributed directions of all vectors ν

$$D = \langle \bar{v}_z l_{mfp,z} \rangle = v_T l_{mfp} \frac{1}{2\pi} \int_0^{\pi/2} \cos^2 \Theta 2\pi \sin \Theta d\Theta$$

\[D = \frac{1}{3} v_T l_{mfp}\]

<table>
<thead>
<tr>
<th>solute</th>
<th>solvent</th>
<th>$D / 10^{-9} \text{m}^2\text{s}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I$_2$</td>
<td>C6H${12}$</td>
<td>4.05</td>
</tr>
<tr>
<td>I$_2$</td>
<td>CCl$_4$</td>
<td>3.42</td>
</tr>
<tr>
<td>I$_2$</td>
<td>C$_6$H$_6$</td>
<td>2.13</td>
</tr>
<tr>
<td>N$_2$</td>
<td>CCl$_4$</td>
<td>3.42</td>
</tr>
<tr>
<td>O$_2$</td>
<td>CCl$_4$</td>
<td>3.82</td>
</tr>
<tr>
<td>Ar$_2$</td>
<td>CCl$_4$</td>
<td>3.63</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>H$_2$O (self diffusion)</td>
<td>2.62</td>
</tr>
<tr>
<td>dextrose</td>
<td>H$_2$O</td>
<td>0.67</td>
</tr>
<tr>
<td>H$^+$</td>
<td>H$_2$O</td>
<td>9.31</td>
</tr>
<tr>
<td>Li$^+$</td>
<td>H$_2$O</td>
<td>1.03</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>H$_2$O</td>
<td>1.96</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>H$_2$O</td>
<td>2.03</td>
</tr>
<tr>
<td>Br$^-$</td>
<td>H$_2$O</td>
<td>2.08</td>
</tr>
<tr>
<td>I$^-$</td>
<td>H$_2$O</td>
<td>2.05</td>
</tr>
</tbody>
</table>

Table 2.1. Diffusion coefficients D of molecules and ions in various solvents
2.4.1 Examples for Diffusional Processes

- Example
 - Bilateral diffusion from 2-D layer
 - Within pure solvent
 - Initial conditions

$$\rho_N(t = 0, z = 0) = \rho_{N,0}$$

$$\rho_N(t = 0, z \neq 0) = 0$$

- Solution by "educated guess"

$$\rho_N(z, t) = \frac{\rho_{N,0}}{\sqrt{\pi D t}} e^{-\frac{z^2}{4Dt}}$$

Graph showing particle concentration over diffusional distance and time.
2.4.1 Examples for Diffusive Processes

![Diagram showing diffusion process with concentration and length axes, and a value of $D = 3 \times 10^{-9}$ m2s$^{-1}$]
2.4.1 Examples for Diffusive Processes
2.4.1 Examples for Diffusive Processes

![Diffusion Diagram]

- **Diffusion**
- **Concentration c** vs **Length x [µm]**
- **Time** from 0s to 5s
- **D = 3 \times 10^{-9} m^2 s^{-1}**
2.4.1 Examples for Diffusive Processes
2.4.1 Examples for Diffusive Processes

![Diagram of diffusion process with concentration and time parameters.](image)

\[D = 3 \times 10^{-9} \text{ m}^2\text{s}^{-1} \]
2.4.1 Examples for Diffusive Processes

- Example
 - Diffusion through permeable diaphragm
 - Initial conditions

\[\rho_N(t = 0, z < 0) = \rho_{N,0} \]
\[\rho_N(t = 0, z > 0) = 0 \]

Example

- Diffusion through permeable diaphragm
- Initial conditions

Fig. 2.9. Diffusion of molecules through a permeable wall at \(z = 0 \) which are initially located at \(z < 0 \). \(D = 3.0 \times 10^{-9} \text{ m}^2 \text{ s}^{-1} \) has been assumed. With increasing time, a uniform distribution builds out.
2.4.1. Laminar Mixing
2.4.1 Time and Length Scales

- **Distance**

\[l_D = \sqrt{2Dt} \]

- **Time**

\[t_D = \frac{l^2}{2D} \]

(“rules of thumb”)

<table>
<thead>
<tr>
<th>(l)</th>
<th>(V)</th>
<th>(t_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mm</td>
<td>1 μl</td>
<td>3.5 min</td>
</tr>
<tr>
<td>100 μm</td>
<td>1 nl</td>
<td>3 s</td>
</tr>
<tr>
<td>10 μm</td>
<td>1 pl</td>
<td>33 ms</td>
</tr>
</tbody>
</table>

Table 2.8. Typical diffusion time \(t \) for lengths \(l \) and corresponding volumes \(V \) for \(D = 3 \times 10^{-9} \text{ m}^2 \text{ s}^{-1} \)
2.4.1 Brownian Motion

- Discovered by Scottish Botanist Robert Brown in 1827
 - Random thermal motion of pollen under microscope
- Closely related to thermal velocity
 \[v_T = \sqrt{\bar{v}^2} = \sqrt{\frac{3k_B T}{m}} \]
- Mesoscopic particle
 - \(r_0 = 1 \ \mu m \)
 - \(m = 10^{-15} \ \text{kg} \)
 - \(T = 293 \ \text{K} \)
 - \(v_T \approx 3 \ \text{mm s}^{-1} \)

Fig. 2.10. Brownian motion resulting from random molecular pressure oscillations leads to wobbling motion of mesoscopic particles that can be observed under a microscope

\[z^2 = 3Dt = \frac{k_B T}{2\pi \eta r_0}t \]

Width of distribution of particle locations
2.4.1 Brownian Motion

- Fluorescent particles
- 4 seconds of data
- 2 µm in diameter
- Left picture
 - Particles moving in pure water
- Right picture shows
 - Particles moving in concentrated solution of DNA
 - I.e., in viscoelastic solution in other words

From http://www.deas.harvard.edu/projects/weitzlab/research/brownian.html
2.4.1 Brownian Motion

- Erratic motion of single milk droplets in water
- Droplets size of about 1 micrometer
- Continuously kicked by fast-moving water molecules
 - Size 5000 times smaller
- Magnification factor of about 10,000

http://www.microscopy-uk.org.uk/
2.4.1 Boltzmann Distribution

- System at T in thermal equilibrium
- Each particle with certain kinetic energy
- Potential gradient
 - Particles accumulate in potential minimum
- Counteracting diffusive current
 \[j_N = -D \nabla \rho_N \]
- Boltzmann distribution
 - Ratio of particle densities ρ_{Ni} at two locations separated by potential difference ΔE
 \[\frac{\rho_{N,1}}{\rho_{N,0}} = e^{-\frac{\Delta E}{k_B T}} \]

Boltzmann function at $T = 273$ K calibrated to $\rho_{N0} = 1$.
2.4.1 Maxwell Distribution

- Maxwell distribution
 - Fraction of molecules in velocity interval \([\nu, \nu + d\nu]\)
 - \(f(\nu)d\nu\) is probability of finding a vector \(\nu\) in \([\nu, \nu + d\nu]\)
 - Normalization of integrand function \(f(\nu)\) to unity
 \[
 \int_0^\infty f(\nu)d\nu = 1
 \]
 - Leads to Maxwell distribution

\[
\begin{align*}
 f(\nu)d\nu &= \sqrt{\frac{2}{\pi}} \left(\frac{m}{k_B T} \right)^{3/2} \nu^2 e^{-mv^2/2k_B T}d\nu
\end{align*}
\]
2.4.1 Maxwell Distribution

- Transformation into energy space
 - Replacing v with kinetic energy $E = 1/2 \, mv^2$

$$f(E) \, dE = \frac{2}{\sqrt{\pi}} \, (k_B T)^{-3/2} \, \sqrt{E} \, e^{-E/k_B T} \, dE$$

 - Helps determining which fraction of particles is capable of "jumping" over a certain potential energy barrier E_0
 - Analytical expression for this fraction

$$\text{tail fraction} = \frac{\int_{E_0}^{\infty} f(E) \, dE}{\int_0^{\infty} f(E) \, dE} = \frac{2}{\sqrt{\pi}} \, \sqrt{\frac{E_0}{k_B T}} \, e^{-E_0/k_B T}$$

Fig. 2.12. Maxwellian function $f(v)$ for O_2 gas at different temperatures
2.4.1 Reaction Kinetics

- Chemical Reactions
 - Binary collisions
 - Collision rate scales linearly with v_T and thus with $T^{1/2}$
 - Concentration of reaction partners c also influences speed of reaction

- For single step reaction

$$xX + yY + \ldots \rightarrow \text{products}$$

- Reaction rate

$$\frac{dn}{dt} = k'_c c^x(X)c^y(Y)\ldots$$

 - Governed by stoichiometry (x, y, \ldots)
 - Concentrations $c(X)$, $c(Y)$, \ldots
 - Reaction velocity constant k'_c
2.4.1 Reaction Kinetics

- Chemical reactions
 - Activation energy (Gibbs energy)
 - Simple model reaction

\[
A_2 + B_2 \rightleftharpoons (A_2B_2)^* \rightleftharpoons 2AB
\]

- For simplicity: \(\Delta G = \Delta U = E_{\text{act}}\)
- Typically \(E_{\text{act}} = 60 \text{ to } 250 \text{ kJ mol}^{-1}\)
- \(\Delta G = G_{\text{act}} - G'_{\text{act}}\)
 - \(\Delta G < 0\) exothermic
 - \(\Delta G > 0\) endothermic

- Velocity constant of reaction
 - Strongly dependent on \(T\)
 - Reaction-specific
 - Arrhenius equation

\[
k'_c(T') = k_0 e^{-E_{\text{act}}/R_g T}
\]
2.4. Transport Phenomena

2.4.1. Diffusion

2.4.2. Viscosity

2.4.3. Transport of Heat

2.4.4. Characteristic Numbers
2.4.2. Viscosity

- Viscosity
 - Transfer of momentum from one plane sliding parallel to another
 - Mediated by fluid sandwiched between them
 - „Internal friction“ of fluid

- Newton’s law of viscosity

\[\dot{p}_x = -\eta \frac{d v_z}{dx} \]

- Relates flow of axial momentum \(p_z = m v_z \) along lateral \(x \)-direction from one plane sliding parallel to another one by viscosity \(\eta \)
- Unit of \(\eta \): Pa s = kg m\(^{-1}\) s\(^{-1}\) or old Poise with 1 Ps = 0.1 Pa s
2.4.2 Viscosity of Gases

- Assumptions for picture:
 - Flow in z-direction
 - Uniform particle density

- Net flux in x-direction of longitudinal momentum p_z

$$j_{p,x} = \frac{1}{2} \rho N m [v_z(x - l_{mfp}) - v_z(x + l_{mfp})] \bar{v}_x$$

$$j_{p,x} \simeq -\rho \frac{dv_z}{dx} l_{mfp} \frac{1}{3} v_T$$

- Viscosity of gases

$$\eta = D \rho = \frac{1}{3} \rho N m v_T l_{mfp}$$

- Kinematic viscosity
 - "Momentum diffusivity"

$$v = \frac{\eta}{\rho} \text{id}. \text{gas} \ D$$

Fig. 2.14. Molecular picture of the viscosity of gases. The left wall is at rest, the right wall located at $z = d$ moves at speed v_0 in x-direction and a linear flow profile is assumed in first approximation.
2.4.2 Viscosity of Gases

<table>
<thead>
<tr>
<th>gas</th>
<th>$\eta / 10^{-5}$ Pa·s</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>1.96</td>
</tr>
<tr>
<td>Ne</td>
<td>2.99</td>
</tr>
<tr>
<td>Ar</td>
<td>2.08</td>
</tr>
<tr>
<td>H$_2$</td>
<td>0.85</td>
</tr>
<tr>
<td>O$_2$</td>
<td>1.91</td>
</tr>
<tr>
<td>N$_2$</td>
<td>1.67</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>1.38</td>
</tr>
<tr>
<td>Air</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Order: 10^{-5} Pa·s

Table 2.9. Viscosity of gases at $T = 293$ K
2.4.2 Viscosity of Liquids

- Liquid
 - Very dense gas
 - $l_{mfp} \approx$ average distance between molecules
 - Macroscopic behavior governed by intermolecular potentials

- Picture
 - Moving A to A'
 - Activation energy E_0
 - External shear stress σ_{xz}
 - Force f on each particle on wall
 - f counteracts motion in negative z-direction
 - Momentum loss transferred to B
 - "Activation energy" $\Delta E = f \ a / 2$

Fig. 2.15. Molecular model for the viscosity of liquids
2.4.2 Viscosity of Liquids

- Transfer of momentum $\Delta p_Z = m \Delta v_Z$
 - Lateral velocity gradient
 \[
 \frac{\Delta v_z}{\Delta x} = a \nu_{\text{net}} / a = \nu_{\text{net}}
 \]
 - ν_{net}: difference between number of jumps ν_{+Z} and ν_{-Z} in positive and negative z-direction, respectively
 - Evaluation of gradient (using Boltzmann Ansatz)
 \[
 \frac{\Delta v_z}{\Delta x} = \nu_{+z}^\text{net} = \nu_{+z} - \nu_{-z}
 \]
 \[
 = \nu_0 \exp \left(- \frac{E_0 - \Delta E}{k_B T} \right) - \nu_0 \exp \left(- \frac{E_0 + \Delta E}{k_B T} \right)
 \]
 \[
 = \nu_0 \exp \left(- \frac{E_0}{k_B T} \right) \exp \left(\frac{\Delta E}{k_B T} \right) \left[\exp \left(\frac{\Delta E}{k_B T} \right) - \exp \left(- \frac{\Delta E}{k_B T} \right) \right]
 \]
 \[
 \approx \nu_0 \exp \left(- \frac{E_0}{k_B T} \right) 2 \frac{\Delta E}{k_B T}
 \]
 \[
 \frac{\Delta v_z}{\Delta x} = 2\nu_0 \frac{fa}{2k_B T} \exp \left(- \frac{E_0}{k_B T} \right)
 \]
 ν_0: fundamental oscillation frequency of molecule between neighbors

Fig. 2.15. Molecular model for the viscosity of liquids
2.4.2 Viscosity of Liquids

- First order Taylor expansion for $\Delta E / k_B T$

$$\exp\left(\frac{\Delta E}{k_B T}\right) \simeq 1 + \frac{\Delta E}{k_B T}$$

- Viscosity of liquids

$$\eta = \frac{\sigma_{xz}}{\Delta v_z / \Delta x} = \frac{f/a^2}{2\nu_0(fa/2k_B T) \exp(-E_0/k_B T)}$$

$$\eta = \frac{k_B T}{a^3 \nu_0} \exp\left(\frac{E_0}{k_B T}\right)$$

$T \downarrow$
2.4.2 Viscosity of Liquids

Table 2.10. Viscosity of selected liquids at different temperatures

<table>
<thead>
<tr>
<th>liquid</th>
<th>T/K</th>
<th>η / 10^{-3} Pa s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg</td>
<td>298</td>
<td>1.53</td>
</tr>
<tr>
<td>CCl₄</td>
<td>298</td>
<td>0.909</td>
</tr>
<tr>
<td>C₆H₆</td>
<td>298</td>
<td>0.601</td>
</tr>
<tr>
<td>C₆H₆</td>
<td>323</td>
<td>0.898</td>
</tr>
<tr>
<td>C₆H₆</td>
<td>348</td>
<td>0.664</td>
</tr>
<tr>
<td>C₆H₆</td>
<td>373</td>
<td>0.521</td>
</tr>
<tr>
<td>CO₂</td>
<td>273</td>
<td>0.098</td>
</tr>
<tr>
<td>H₂O</td>
<td>298</td>
<td>0.890</td>
</tr>
<tr>
<td>glycerin</td>
<td>293</td>
<td>1500</td>
</tr>
<tr>
<td>ethanol</td>
<td>293</td>
<td>1.21</td>
</tr>
<tr>
<td>benzol</td>
<td>293</td>
<td>0.65</td>
</tr>
<tr>
<td>ethylic ether</td>
<td>293</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Order: 10^{-3} Pa s
(gases: 10^{-5} Pa s)
2.4.2 Newtonian Fluids

- Newtonian fluids
 - Classical idealized fluids
 - Linear stress-strain relationship
 - I.e. linear relationship between tension tensor σ and tensor of rate of deformation (strain rate) ν

 $\sigma \propto \nu$

 - Viscosity η: constant of proportionality
 - Approximated by gases and "simple" liquids like water

- Non-Newtonian fluids
 - Dispersions containing large structured macromolecules
 - E.g. polymers and proteins
2.4. Transport Phenomena

2.4.1. Diffusion

2.4.2. Viscosity

2.4.3. Transport of Heat

2.4.4. Characteristic Numbers
2.4.3. Transport of Heat

- Equilibrium thermodynamics
 - System seeks uniform temperature distribution
- Inhomogeneous T-distribution
 - Transport of heat
- Two basic modes
 - Diffusion
 - Statistical phenomenon (related to entropy)
 - Summarized in macroscopic thermal conductivity λ
 - Convection
 - Far more complicated
 - Macroscopic ramifications
 - Minor importance in microworld
- Another frequently encountered issue
 - Transfer of thermal energy at interface between two media/phases
 - No inter-phase diffusion / exchange of particles
 - Transmission and transition of heat
2.4.3 Thermal Conductivity

- Fourier's law
 - Basic equation quantifying diffusive transport of heat
 \[j_Q = -\lambda \frac{dT}{dz} \]
 - Net flow of energy \(j_Q \)
 - Thermal conductivity \(\lambda \)

- Power
 \[P = j_Q A = A\lambda \frac{dT}{dz} \]
 - Cross-section of flow \(A \)

- Relaxation time for temperature gradient
 - Distance \(d \)
2.4.3 Thermal Conductivity

- Molecular picture

- Net energy flow in positive z-direction

- Using linear terms of Taylor-expansion

\[
\dot{Q}_{+z} = \frac{1}{6} \rho_N v_T \left[\bar{E}_N(z - l_{mf}) - \bar{E}_N(z + l_{mf}) \right]
\]

\[
= \frac{1}{6} \rho_N v_T \left\{ \left[\bar{E}_N(z) - l_{mf} \frac{\partial \bar{E}_N}{\partial z} \right] - \left[\bar{E}_N(z) + l_{mf} \frac{\partial \bar{E}_N}{\partial z} \right] \right\}
\]

\[
= -\frac{1}{3} \rho_N v_T l_{mf} \frac{\partial \bar{E}_N}{\partial z}
\]

\[
\dot{Q}_{+z} = -\left(\frac{1}{3} \rho_N v_T l_{mf} \frac{\partial \bar{E}_N}{\partial T} \right) \frac{\partial T}{\partial z} = -\lambda \frac{\partial T}{\partial z}
\]
2.4.3 Thermal Conductivity

- Thermal conductivity

\[\lambda = D \rho C_m = \frac{1}{3} \rho C_m v_T l_{\text{mfp}} \]

- Approximating on \(l_{\text{mfp}} \)

\[\lambda = \frac{1}{3 \sqrt{2} \sigma_{\text{coll}}} v_T \frac{\partial \tilde{E}_N}{\partial T} \]

- Independent of particle density \(\rho_N \) for ideal gas

- Heat diffusion coefficient

\[\lambda_D = \frac{\lambda}{\rho C_m} \text{id.gas} \]

\[v = \frac{\eta}{\rho} \text{id.gas} \Rightarrow D \text{ kinematic viscosity} \]
2.4.3 Thermal Conductivity

- Typical values

<table>
<thead>
<tr>
<th>gas</th>
<th>$\lambda / \text{W m}^{-1}\text{K}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>1.44×10^{-1}</td>
</tr>
<tr>
<td>Ne</td>
<td>4.60×10^{-3}</td>
</tr>
<tr>
<td>Ar</td>
<td>1.79×10^{-3}</td>
</tr>
<tr>
<td>H$_2$</td>
<td>1.75×10^{-1}</td>
</tr>
<tr>
<td>O$_2$</td>
<td>2.43×10^{-2}</td>
</tr>
<tr>
<td>N$_2$</td>
<td>2.39×10^{-2}</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>1.42×10^{-2}</td>
</tr>
<tr>
<td>air</td>
<td>2.41×10^{-2}</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>1.58×10^{-2}</td>
</tr>
</tbody>
</table>

Table 2.11. Thermal conductivity of gases at $T = 273$ K

<table>
<thead>
<tr>
<th>material</th>
<th>temperature $\theta / ^\circ\text{C}$</th>
<th>thermal conductivity $\lambda / \text{W m}^{-1}\text{K}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminum</td>
<td>0 – 200</td>
<td>230</td>
</tr>
<tr>
<td>silica glass</td>
<td>0 – 100</td>
<td>1.4</td>
</tr>
<tr>
<td>helium</td>
<td>0</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.17</td>
</tr>
<tr>
<td>air</td>
<td>0</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.031</td>
</tr>
<tr>
<td>water</td>
<td>0</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.67</td>
</tr>
<tr>
<td>ethanol</td>
<td>0</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table 2.12. Thermal conductivity for solids, liquids and gases
2.4.3 Convection

• Macroscopic transport of particles
 ➢ Characteristic for macro-devices
 ➢ Important for heat transport in liquids and gases

• Forced convection
 ➢ Transport of heat by macroscopic particle flow
 ➢ E.g., by an *external mechanical* source

• Free convection
 ➢ For instance driven by *buoyancy*
2.4.3 Convection

- Convective currents
 - Stationary or non-stationary flow patterns

- Simulation of convection
 - Often fail to coincide with experimental observations
 - E.g., atmospheric weather and climate

- Free Convection of minor importance in microdevices
 - Laminar conditions
2.4. Transport Phenomena

2.4.1. Diffusion
2.4.2. Viscosity
2.4.3. Transport of Heat

2.4.4. Characteristic Numbers
2.4.4. Characteristic Numbers

• Fourier mass number
 ➢ Characterizes diffusion

\[
Fo_m = \frac{Dt}{l^2}
\]

➢ Time \(t \), e.g. residence in chemical reaction chamber
➢ Typical diffusive time scale \(t_D = \frac{l^2}{D} \)

• Schmidt number
 ➢ Relates viscosity and diffusion

\[
Sc = \frac{\eta}{\varrho D} = \frac{\nu}{D} \quad \text{id. gas} \quad 1
\]

➢ Roughly 0.8 for gases
2.4.4. Characteristic Numbers

- Fourier number
 - Diffusion of heat
 - Stored thermal energy

\[F_0 = \frac{\lambda t}{\rho C_m l^2} = \frac{\lambda_D t}{l^2} \]

- Prandtl number
 - Ratio between momentum diffusivity (via dynamic viscosity \(\eta \)) and heat diffusivity (via thermal conductivity \(\lambda \))

\[Pr = \frac{C_m \eta}{\lambda} = \frac{\nu}{\lambda_D} \overset{\text{id.gas}}{=} 1 \]

- Specific heat capacity \(C_m \)
- Typically 3 to 300 for liquids and 0.7 to 1.0 for gases