DRAFT Dublin City University Biodiversity Action Plan 2020-2025

Executive Summary

Table of Contents

The overall aim of DCU's Biodiversity Action Plan is to enhance and protect biodiversity, and to ensure that every member of the DCU community understands its importance in our lives. The Convention on Biological Diversity state that biodiversity is the critical foundation of the Earth's life support system on which the welfare of current and future generations depends. Humans depend on biodiversity and the ecosystem services that stem form it for many basic needs. Biodiversity is important for sustainable development and relates to all 17 Sustainable Development Goals but there are two proposed goals that explicitly refer to it; goals 14 (Life below Water) and 15 (Life on Land).

DCU is committed to protecting biodiversity and embedding this protection into decision making across all sectors of the University including: building and grounds management, public realm spaces and in the construction of new buildings. The use values associated with biodiversity are immense and can be categorised as economic, socio-cultural and health values, with each category having a number of benefits associated with it.

1. Introduction	1
2. Objectives and Actions	5
Objective 1: Provide habitats where pollinators and can survive and thrive	8
Objective 2: Remove invasive plant species	11
Objective 3: Landscape management to maintain and enhance biodiversity	11
Objective 4: Contribute to Dublin City Council's Climate Action Plan	14
Objective 5: Monitor change and measure success	15
Objective 6: Raise awareness and encourage engagement	15
3. Resourcing recommendations and DCU's Biodiversity Action Plan 2022 -	16
4. References	16
5. Appendices	21
5.1 Management guide for contractors	21
5.2 Habitats in DCU	27
5.3Plant lists	28
5.4 Other species	35
5.5 Biodiversity Action Plan Review Process	38
5.5.1 Annual report layout and check list	38
5.5.2 Biodiversity Action Plan 2022-	39

1. Introduction

1.1 Background

This Biodiversity Action Plan has been developed to:

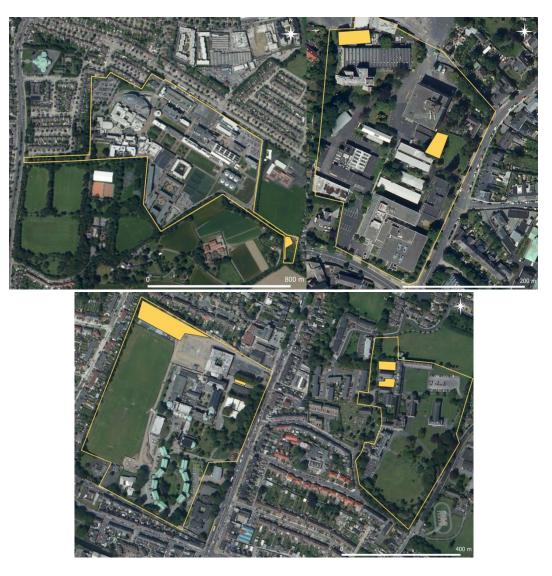
- I. Highlight DCU's unique biodiversity value
- II. Propose recommendations to maintain the University's biodiversity
- III. Enhance pollinator diversity and increase the carbon absorption by vegetation
- IV. Identify opportunities for the University to enhance and protect its biodiversity
- V. Communicate the importance of biodiversity to the DCU community
- VI. Support the Dublin City Council Climate Change Action Plan 2019-2024, the All Ireland Pollinator Plan 2015-2020, the EU Biodiversity Strategy and the United Nation's Sustainable Development Goals.

1.2 The importance of Biodiversity

The Convention on Biological Diversity state that biodiversity is the critical foundation of the Earth's life support system on which the welfare of current and future generations depends ³. Humans depend on biodiversity and the ecosystems services that stem form it for many basic needs. Biodiversity is important for sustainable development and relates to all 17 Sustainable Development Goals but there are two proposed goals that explicitly refer to it; goals 14 (Life Below Water) and 15 (Life on Land) ³. There is also extensive research into the health and well-being benefits that accrue from green spaces, which plants and pollinators play an important role in sustaining ^{4,5}.

1.3 Threats to Biodiversity

Worldwide up to one million plant and animal species are threatened with extinction ^{6,7}. In the next 50 years this figure is expected to rise ⁸. Land-use change and habitat fragmentation⁹, overexploitation (the harvesting of species from the wild at rates that cannot be compensated for by reproduction or regrowth), agriculture (the production of food, fodder, fibre and fuel crops; livestock farming; aquaculture; and the cultivation of trees), pollution, invasive species ¹⁰, and climate change ¹¹ are considered to be the greatest threats to global biodiversity.


In the last decade, honey bee populations have increased on a global scale, however unprecedented colony losses have been reported in Europe ^{12,13} including Ireland ¹⁴. Multiple causes of colony loss are suspected, including infection by pathogens (including viruses, bacteria, fungi and parasites ^{15–17}, poisoning by chemical compounds (including pesticides ^{18–22}), and habitat loss, which has contributed to a reduction in the abundance and diversity of floral resources ^{23,24}. There is growing evidence that many bumble bee species have declined in recent decades, particularly in Western Europe and North America ^{25,26}. Like honey bee

losses, it has been suggested that the combination of habitat fragmentation, pesticide use and infection by pests and diseases and the interactions between these are the main causes of bumble bee decline ²⁴. In Ireland the occurrence and spread of invasive and non-native is increasing and may lead to the displacement of native species and considerably alter biodiversity, and subsequently, ecosystem processes and services ²⁷.

Tilman *et al.* 2017 state that *"The policies and actions that we adopt now will be instrumental in determining which, and how many, species will survive the present era of environmental change"*. DCU is committed to maintaining adequate green space cover within the grounds of University in order to mitigate against both climate change effects and biodiversity loss.

1.4 Biodiversity in DCU

The International Union for Conservation Network (IUCN) developed a method to identify key biodiversity areas (KBA) on a global scale. This method is based on specific criteria and thresholds with the aim of identifying sites that contribute significantly to the global persistence of biodiversity ²⁸. Using a modified version of the IUCN KBA Standard Method, the KBA in DCU have been identified and are highlighted in Fig. 1.

Figure 1 DCU's 6 Key Biodiversity Areas (highlighted in yellow)

The method used to identify KBA in DCU is based on several thresholds within five criteria.

- a. threatened biodiversity
- b. variety of species
- c. uniqueness of habitat
- d. number of native plant species
- e. potential carbon sink

Four thresholds within each of the five criteria were used to score areas within the University grounds. The higher the score achieved for each area, the higher the biological significance of the area. KBAs identified under criterion C should ideally be delineated to be at least $10m^2$ in size. The thresholds associated with each criteria are listed in the Appendix (Section 4.4).

Carbon sequestration of vegetation can depend on the plant species characteristics and the amount of pervious surfaces ^{29–31}. Although there is limited evidence that supports the carbon sequestration efficacy of urban vegetation ³¹, net CO2 flux measurements in urban areas suggest that there is greenery sink capacity however it is limited. Revelli *et al.* suggest that urban trees can contribute to carbon sequestration and the authors conclude that that although carbon sequestration can be non-negligible it can be enhanced with proper design ³².

A brief overview of the habitats and plant species currently found in DCU are listed below. This information was used to identify areas within the University that have the highest biodiversity value and areas with a capacity for carbon sequestration.

1.4.1 Habitats in DCU

During a brief casual survey in April 2019 six habitats were identified across four of the five DCU campuses: All Hallows, Alpha, Glasnevin and St Patrick's (Fig. 2). This corresponds to approximately 60ha of surveyed area. Habitats were classified according to Fossit 1999 ³³. There are several grassland sites within the University Grounds that do not fit into Fossit's Habitat Categories. These sites have been suggested as KBA for the University (Fig. 1).

Buildings and artificial surfaces cover approximately one third of the surveyed area and is one of the habitats of least value to wildlife. Detailed information regarding each of the habitat types can be found in the Appendix Section 5.2.

Figure 2 Map highlighting the four DCU Campuses in Yellow

1.4.2 Plants in DCU

A DCU Plant list has been generated based on surveys carried out between 2013 and 2019. Two hundred and eighty-four species of plants are located within the university grounds. A list of plants is provided in Appendix Section 5.3 (Table 6). This list contains the Latin name, common name and the most recent year of record.

1.4.3 Other species in DCU

Casual records of other species recorded within the grounds of DCU between 2013 and 2019 are listed in Appendix Section 5.4. Thirty-two species of bird, twenty-six species of lichen, twenty-five species of insects, seventeen species of molluscs, thirteen non-insect invertebrates, seven mammals and 5 species of fungus were recorded (Table 7).

1.5 Potential links to Teaching and Learning and Research

Staff within the university that can link to the Biodiversity Action Plan are listed in Table 1.It is expected that teaching staff within the University incorporate the Biodiversity Action Plan into teaching and learning and research where possible.

Table 1 List of Staff within DCU that can link teaching and learning to the Biodiversity Action Plan.

Name	Position	School
John Connollly	Senior lecturer	Business School
Jennifer Lawler		School of Biotecnology
Blánaid White	Associate professor	School of Chemical Sciences
Fiona Regan	Associate professor	School of Chemical Sciences

Brian Kelleher	Associate professor	School of Chemical Sciences
Barry McMullen		School of Electronic Engineering
Lorna Fitzsimons	Assistant Professor	School of Mechanical and Manufacturing Engineering
Eilish McLoughlin	Associate Professor	School of Physical Sciences
Susan Pike		School of STEM Education, Innovation & Global Studies
Cliona Murphy	Associate professor	School of STEM Education, Innovation & Global Studies
Orla Kelly	Lecturer	School of STEM Education, Innovation & Global Studies

1.6 Overview of objectives

DCU's Biodiversity Plan has six objectives:

- 1. Provide habitats where pollinators can survive and thrive
- 2. Combat Invasive Species
- 3. Manage the landscape to maintain and enhance biodiversity
- 4. Contribute to Dublin City Council's Climate Action Plan
- 5. Collect evidence to monitor change and measure success
- 6. Raise awareness and encourage engagement

2. Objectives and Actions

Specific targets have been set for the University, as a whole and across each of the four campuses. These targets are linked with both Dublin City Councils Climate Action Plan and the All Ireland Pollinator Plan. There are 19 actions listed below (Table 2) associated with at least one of the six objectives. The staff that can assist with each action to be taken to meet each of the objectives as well as the progress indicators of each action are also listed in Table 2 and further explained below.

Table 2 List of Objectives and Actions for DCU under the Biodiversity Action Plan

	Objective	Actions Over the next 3 years we will	Progress indicators	Staff who could assist
1	Provide habitats where	Reduce the frequency of mowing and collect	Reduction in fuel and	Estates officer, facilities
	pollinators and can	clippings	contractor costs (see Table 3	manager, grounds staff and
	survive and thrive		for cost estimates)	contractors
		Introduce artificial solitary bee nests and bird	Increase in the number of	Lecturers, maintenance
		boxes	pollinator species	services
		Wildflower meadow management and	Increase in the number of	Head of estates, grounds staff,
		introduction	wildflower meadows on	contractors
			campus	
2	Remove invasive alien	Identify all medium and high impact invasive plant	List of invasive species put	Sustainability manager, project
	species	species	on University Website	student, contractor
		Remove invasive species from 2 sites per year	Reduction in the number of	Facilities manager, grounds
			sites with invasive species	staff, contractors
			and increase in number of	
			flowers	
3	Landscape management	Prioritising native plants in new planting schemes	Number of native species	CEO, Head of estates, grounds
	to maintain and enhance	(at least 75% of plants to be pollinator friendly)	will increase	staff, contractors
	biodiversity	Reduce hedge cutting and cut between November	Reduction in fuel, pesticide	CEO, facilities manager,
		and January and 5 keep fertilisers, pesticides and	and contractor costs	grounds staff, contractors
		herbicides well away from trees, hedges and		
		verges		
		Identify at least 10 locations that are mown under	Reduction in fuel and	CEO, facilities manager,
		a pollinator friendly regime (5 cut and lifts per year	contractor costs	grounds staff, contractors
		after 15th April)		

		Identify areas where the use of herbicide fungicide and, insecticide can be eliminated. Do not Spot spray until after the 15th April	Reduction in pesticide and contractor costs	Sustainability and facilities manager, project student, grounds staff
		Identify at least 4 areas that can be converted to perennial planted boarder	Number of pollinators and flowers will increase	President, sustainability manager, project student, contractor
4	Contribute to Dublin City Council's Climate Action	Assess the feasibility of green walls	Feasibility study completed	Sustainability and facilities manager
	Plan	Assess the feasibility of a wetland	Feasibility study completed	Sustainability and facilities manager
		Create and Promote a DCU Tree Trail	Tree Trail Completed	Sustainability and facilities manager, grounds staff
		Implement Dublin City Council Invasive Alien Species Action Plan	Reduction in Invasive species	Sustainability and facilities manager, grounds staff
5	Monitor change and measure success	Develop a Biodiversity Team to contribute to annual progress report and	Team developed	Facilities manager
		Log existing and new 'Actions for Pollinators' on the mapping system (pollinators.ie)	Number of actions logged	Facilities manager
6	Raise awareness and encourage engagement	Put up signage to identify pollinator friendly habitats	Signage erected	Maintenance services
		Facilitate or deliver training on biodiversity and how to take action to protect it	Number of events and participation	Sustainability and facilities manager
		Identify interested people and set up at least one bumblebee monitoring scheme walk within key sites	Number of bumblebee monitoring events	Sustainability and facilities manager

Objective 1: Provide habitats where pollinators and can survive and thrive

With the current concerns of pollinator decline comes a crucial need for improving pollinator habitats. Bees provide a vital service to both natural ecosystems and farming and therefore should be offered a high level of protection given the potentially far-reaching effects of their decline. Bee abundance and diversity has been shown to depend on the surrounding landscape and the floral resources within. Many methods and land management techniques have been implemented, and shown to have positive impacts on bees and their floral resources ³⁴. A large portion of the human diet ³⁵ and essential nutrients ³⁶ come from crops pollinated by insects. Globally, 87 of the leading food crops (accounting for 35% of the world food production volume) depend on animal pollination ³⁵. Pollination is essential for crop products and is proven to increase their seed yield and economic value. Klein et al. (2007) report a 75% increase in fruit or seed set with animal pollination for the world's leading food crops ³⁵. Bees are considered the dominant pollinators in many habitats across the world, ³⁷ although non-bee pollinators (flies, beetles, moths, butterflies, birds and bats, among others) also play an important role ³⁸. In temperate regions, including Ireland most animal pollination is provided by honey bees (Apis mellifera), bumble bees (Bombus spp.), solitary bees, wasps and hover flies.

There are numerous strategies which can improve bee forage and provide shelter and safety in the urban environment. For example: planting flowers with accessible and high quantity and quality rewards, cutting during non-flowing periods, reducing or stopping the unnecessary use of pesticides ³⁹. In Ireland, the past five years have shown significant advances in relation to the sustainable management of land use for the provision of flowers and bees, including initiatives such as the All Ireland Pollinator Plan ³⁹ and the Irish National Action Plan for the Sustainable Use of Pesticides (Plant Protection Products) ⁴⁰. Given the exponential rate at which research is being conducted both nationally and internationally, the next five years are likely to be equally, if not more, active.

Action 1: Reduce the frequency of mowing

Nesting sites for bumblebees can be created by allowing the grass to grow. Four sites with the All Hallows and St Patricks Campus have been identified as areas with a high diversity of plant species (Fig. 3). By allowing the grass and flowers within to grow, food and nesting resources for birds will also be available.

Figure 3 Areas highlighted in yellow are sites within St Patricks College (left) and All Hallows (right) where mowing should be reduced to once or twice a year.

Action 2: Introduce artificial solitary bee nests

Incorporate small numbers of solitary bee nest boxes into the local community for cavity nesting solitary bees. Research from the UK and Ireland shows that nest boxes can be occupied by small numbers of cavity nesting solitary bees ^{41,42}.

Action 3: Wildflower meadow management and introduction

The AIPP states that the most important action that can be taken on public land is to reduce the frequency of mowing to allow wildflowers to grow ³⁹. It is recommended that, grassy areas should only be mown once or twice annually. They should be cut in early September to allow wild plants to flower and set seed. If doing an early cut, mow in late spring after the first flush of dandelions (late April). Remove grass when cut in order to reduce coarse grasses and increase wildflower diversity. On a wildflower-rich site, where feasible, grass should be turned after cutting to allow seeds to fall. Research carried out in Scotland showed that patches planted with wildflower seed mix had x25 more flowers, x50 more bumblebees and x13 more hoverflies compared with plots where wildflower seed had not been sown ⁴³. The AIPP also recommends allowing grassy areas to grow and carry out an initial species survey to determine if a seed mix is required. Where appropriate, paths can be mown through wildflower meadows so that members of the DCU can visit and enjoy the resource.

DCU are committed to creating at least 5 meadows (one cut and lift per year). Figure 4 shows the six proposed sites. These sites already contain high species richness and no additional wildflower seed will be required for the sites.

Figure 4 Sites suitable as wildflower meadow management as per the AIPP guidelines

Sites managed as wildflower meadows will allow wildflowers to bloom throughout the pollinator season, provide undisturbed areas for nesting and food for a number of animals as well as reduce carbon emissions from fuel costs and enhance soil carbon sequestration. Under no circumstances will any pesticides (herbicides, fungicides or insecticides) be used in these areas. The 'Councils actions to help pollinators'⁴⁴ and the 'How-to-guide: creation and management of a wildflower meadow'⁴⁵ provide further details on wildflower management. Three of the key steps for wildflower meadow management are listed below:

1 Identify areas of grass that could be left uncut until late August-early September.

- 2 The annual cut in September should be removed to reduce soil fertility over time.
- 3 Cutting paths through the middle or keeping a short border at the edge will demonstrate that these meadows are being managed and allow the public to enjoy the resource.

Objective 2: Remove invasive plant species

Invasive species are non-native species that have been introduced by human intervention, outside their natural range and have the ability to threaten native wildlife and cause damage to environments, economies or human health ⁴⁶. Invasive species are one of the causes of biodiversity loss within Ireland ²⁷. DCU are committed to identifying all medium and high impact invasive plant species as per the National Biodiversity Data Centre's taxon designation group lists ⁴⁷and removing of all invasive plant species. Both the identification and the removal of invasive species within the University grounds will contribute too DCC's Climate Action Plan.

Action 4: Identify all medium and high impact invasive plant species

A number of invasive plant species have been identified within the University Grounds; e.g. *Hyacinthoides hispanica* (Spanish bluebell), *Crocosmia x crocosmiiflora* (Monbretia), and one medium impact invasive species (*Acer pseudoplatanus*). Within the coming two years all invasive species within the campuses will be listed. Species lists in Section 5.3 and 5.4 will be crosschecked with the Invasive species list on the National Biodiversity Data Centre's Website (<u>http://www.biodiversityireland.ie/projects/invasive-species/species-lists/</u>). An Undergraduate (e.g. BSc. in Environmental Science) or Masters (e.g. MSc in Sustainable Development) project student could include an invasive species report within their final year project.

Action 5: Remove invasive species from 2 sites per year

Where applicable invasive species will be removed from each of the Campus's on an annually basis. This will be carried out by an external contractor or will be carried out by the University Grounds Staff. A risk assessment will be conducted prior to the removal of any invasive species to ensure no negative impacts on other biodiversity within the area (e.g. tree root damage).

Objective 3: Landscape management to maintain and enhance biodiversity

To maintain and enhance biodiversity DCU is committed to:

- Protecting what is there already
- Prioritising native plants in new planting schemes
- Altering the frequency of mowing maintain and enhance biodiversity

Action 6: Prioritising native plants in new planting schemes (at least 75% of plants to be pollinator friendly

By only selecting plant species provided in Appendix Section 5.1.5 and / or the AIPP Planting code all new planting schemes will benefit biodiversity across the 4 campuses.

Action 7: Tree and hedge management for birds and pollinators

Good quality hedges can provide the four essential needs of birds and pollinators: Sources of pollen / nectar and fruit for food, places to breed, places to shelter and corridors and pathways to travel across the landscape. Cutting hedges back to the same point every year reduces their capacity to flower and fruit. Removing all ivy from trees, shrubs and structures is detrimental to wildlife. Establishing a balance is important ⁴⁹. The how to guide for managing existing hedges for pollinators includes many simple steps, five of which are listed below:

- 1 If hedges are to be trimmed, cut them on two or three year cycle in rotation. This will result in there being some areas producing flowers each year.
- 2 Where annual cutting is necessary try and cut a few centimetres further out each year this will leave a small amount of older wood on which the plant
- 3 Cutting hedges between November and January is likely to be less disruptive to pollinators.
- 4 Where ivy is a threat to the health or stability of trees control excessive levels on a rotational basis so that there is always some ivy available for wildlife.
- 5 Keep fertilisers, pesticides and herbicides well away from hedges and verges they are all detrimental to birds and pollinators.

Action 8: Reduction in mowing

Evidence from the USA showed that Dandelions and White Clover on lawns supported 37 species of bee. White Clover was important for bumblebees and honeybees, whereas solitary bees, honeybees and hoverflies predominated on Dandelion ⁵⁰.

On areas of grass, changing the frequency of mowing allows common wildflowers such as Bird's-foot-trefoil, Clovers, Dandelions, Daisy and Knapweed to naturally grow amongst the longer grass. This is the most cost-effective way to provide food for pollinators and other insects and provides nesting materials for birds. This also reduces carbon emissions by reducing the fuel consumption of lawn mowers. This is not a reduction in management effort, but a reallocation to provide additional benefits e.g. perennial planting schemes or invasive species removal. As per the AIPP guidelines, consulting with the DCU community and keeping them informed of plans can allay fears that changed mowing regimes are due to lack of management. Signage can also be used to identify areas as deliberate.

The Pollinator Council Guide includes many simple actions to help pollinators, five of which are listed below:

- 1 Identify at least 10 locations that are mown under a pollinator friendly regime (5 cut and lifts per year)
- 2 Don't mow until 15th April and then cut on a 6-weekly rotation.
- 3 Cuttings should be lifted.
- 4 These areas could be combined with pollinator friendly spring flowering bulb planting (e.g., Snowdrop, Crocus, Allium).

A cost benefit analysis of mowing regimes has been carried out by a large landscaping company in ROI (Table 3)⁴⁴. Prices are based on flat ground accessible with ride on equipment and within a 40 km radius of Dublin.

Table 3 Cost benefit analysis of two different mowing regimes based on prices from a large landscaping company in ROI. Table adapted from the Councils actions to help pollinators guide ⁴⁴

Mowing Regime	Approximate cost per ha (2016)
22 Cuts per year, grass mulched back in	€2,464.00+vat Cost inclusive of equipment, labour and fuel
5 Cuts per year with cuttings lifted	€2,437.00+vat Cost inclusive of equipment, labour, fuel and waste disposal

Action 9: Reduce the use of pesticides

Insecticides pose the greatest direct hazard to insect pollinators ³⁹, however, herbicides are having a much greater negative impact on pollinators because they are so widely used ³⁹. Pesticides have negative biological and ecological impacts on a wide range of non-target organisms in terrestrial and aquatic habitats ^{51–54}. Pesticides should be used sparingly and only when absolutely necessary, for example in the treatment of invasive species like Japanese Knotweed. Four actions will be carried out to reduce the use of pesticides:

- 1 Identify areas where the use of herbicide fungicide and, insecticide can be eliminated.
- 2 Identify sites where pesticide use could be reduced to 10% of previous planned maintenance spraying regimes.
- 3 For spot treating on hard surfaces, and spraying edges of paths adopt a policy of not spraying until the 15th April. This allows dandelions and other wild plants to flower and provide a vital source of food in spring.
- 4 Have spraying buffer zones around important pollinator habitat. Signage should be used to identify these areas.

Action 10 Perennial planting scheme

Pollinator friendly perennial plants are excellent sources of pollen and nectar. They are more attractive to bees when planted in blocks rather than as single plants ³⁹. Having a pollinator

friendly perennial bed is an excellent way to provide food for pollinators across their lifecycle ⁴⁴. Perennials can be used to great effect in traffic islands and public spaces, providing a strong visual impact and giving a good display of flowers over a long period. Pollinator friendly perennial planting should be designed to provide a food source from spring through to autumn and a list of plant species can be found in Appendix x or in the Councils actions to help pollinators guide ⁴⁴. In addition, perennial planting schemes are: low maintenance easy to establish, have strong visual impact which contributes to the health and well-being of staff and students, less maintenance intensive than lawn mowing and provides habitat and nesting materials for birds and insects.

Objective 4: Contribute to Dublin City Council's Climate Action Plan

Nature based solutions (NBS) are critical in climate change adaptation; they can play an important role not only for biodiversity and ecosystems, flood prevention and carbon sequestration, but also in temperature regulation, water quality, erosion prevention, and filtering pollutants from the air and water. Monitoring the environment is part of nature-based solutions (NBS). DCU is currently leading research regarding environmental monitoring using sensors. Sustainable supply chains are also key elements concerning NBS. DCU is supporting a market garden within the University Grounds which provides staff and students with sustainably sourced, local produce. Dublin City Council's Climate Action Plan includes a detailed list of actions currently being carried out within Dublin regarding NBS. DCU is committed to contributing to Dublin City Council's Climate Action Plan, specifically, over the coming three years DCU is committed to:

- 1. Identify what the most appropriate tree species are to reduce run off and include list in the Biodiversity Action Plan 2022 2027 (DCC CCAP Action 17).
- 2. Identify plant species that are optimum for reducing glare and ameliorate temperature and humidity (DCC CCAP Action 17).
- 3. Support the current market garden and expand the land area dedicated to growing food (DCC CCAP Action 38).
- 4. Develop a Green Infrastructure Strategy (DCC CCAP Action 8).
- 5. Assess the feasibility of green walls (DCC CCAP Action 12).
- 6. Assess the feasibility of a wetland (Flood risk management Action 12).
- 7. Create and Promote a DCU Tree Trail (DCC CCAP Action 16).
- Implement Dublin City Council Invasive Alien Species Action Plan (DCC CCAP Action 20).

Over the coming year 4 actions will be carried out within the University (Actions 11-14).

Action 11 & Action 12 Assess the feasibility of green walls and a wetland This could be part of an Undergraduate (e.g. BSc. in Environmental Science) or Masters (e.g. MSc in Sustainable Development) project student's final report or could be conducted by a

contractor managed by the Estates Office.

Action 13 Create and promote a DCU Tree Trail

This could be co-ordinated by the University Grounds staff and managed by the course coordinator and undergraduate students within the School of STEM Education.

Action 14 Implement Dublin City Council Invasive Alien Species Action Plan This overlaps with Actions 4 and 5 associated with objective 2.

Objective 5: Monitor change and measure success

The facilities manager has committed to complete an annual review of the Biodiversity Action Plan. The Biodiversity Team will contribute their information to the annual review process. Each year the facilities manager will log existing and new 'Actions for Pollinators' on the mapping system (pollinators.ie) and email all staff and students to ensure all efforts are recognised.

Action 15 Develop a Biodiversity Team to contribute to annual progress report

The sustainability Manager is responsible co-ordinating a biodiversity team. To ensure the BAP is implemented the University Biodiversity Team will meet annually to discuss the progress report. The sustainability Manager will compose a terms of reference document for the Biodiversity Team outlining the specific role of each member. One member of the Biodiversity Team will be responsible for logging the actions for pollinators.

Action 16: Log existing and new 'Actions for Pollinators' at pollinators.ie DCU are committed to logging at least one new action per year over the coming 3 years.

Objective 6: Raise awareness and encourage engagement

Three actions will be completed to raise awareness and encourage engagement over the coming three years. Additional possible awareness raising campaigns include:

- 1. Carry out a competition prior to the launch of the DCU Biodiversity Plan, e.g. The great DCU Bug hunt.
- 2. Organise a tree walk within DCU.

Action 17: Put up signage to identify pollinator friendly habitats.

Signage will be erected as soon as the University joins the AIPP. Signage will be provided by the National Biodiversity Data Centre.

Action 18: Facilitate or deliver training on biodiversity and how to take action to protect it. The Sustainability Manager and the facilities manager will be responsible for delivering two training sessions over the coming three years.

Action 19: Identify interested people and set up at least one bumblebee monitoring scheme walk within a KBA.

In this scheme volunteers walk a fixed 1-2km route once a month between March and October and record the diversity and abundance of bumblebees that they see. The scheme is

run by the National Biodiversity Data Centre who provides full support and training. The scheme is vital in tracking what is happening with wild pollinators in the landscape, and can be used to assess the effectiveness of any pollinator friendly actions that are being taken locally. Email info@biodiversityireland.ie for more information.

3. Resourcing recommendations and DCU's Biodiversity Action Plan 2022 -We need to ensure that the activities of today do not compromise ecosystems tomorrow. This will in turn help to ameliorate the challenges presented by impending climate change.

Initial funding for the solitary bee boxes is expected to come from the Estates and Presidents Office. It is hoped that a Sustainability Fund (set up by the President's Office) will be established and any university member can apply to it. It is also hoped that student societies can donate money from proceeds from charity events. The money saved from a reduction in lawn and hedge management and the reduction in pesticides will be used to move the biodiversity action plan forward. The Grounds Estates budget will be used to lay some wildflower turf.

4. References

- 1. Convention on Biological Diversity. Article 2. Use of Terms. (2019). at https://www.cbd.int/convention/articles/default.shtml?a=cbd-02>
- 2. Irish Forum on Natural Capital. What is natural capital? at http://www.naturalcapitalireland.com/what-is-natural-capital.html
- 3. Convention on Biological Diversity. Sustainable Development Goals. (2019). at https://www.cbd.int/2011-2020/about/sdgs
- Maas, J., Verheij, R. A., Groenewegen, P. P., de Vries, S. & Spreeuwenberg, P. Green space, urbanity, and health: how strong is the relation? *J. Epidemiol. Community Health* 60, 587 592 (2006).
- 5. Lee, A. C. K. & Maheswaran, R. The health benefits of urban green spaces: a review of the evidence. *J. Public Health (Bangkok).* **33**, 212–222 (2011).
- Tollefson, J. Humans are driving one million species to extinction. *Nature* 569, 171 (2019).
- 7. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (2019). at <https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_ posting_htn.pdf>

- 8. Tilman, D. *et al.* Future threats to biodiversity and pathways to their prevention. *Nature* **546**, 73 (2017).
- Newbold, T. *et al.* Global effects of land use on local terrestrial biodiversity. *Nature* 520, 45 (2015).
- 10. Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: The ravages of guns, nets and bulldozers. *Nature* **536**, 143–145 (2016).
- 11. Urban, M. C. Accelerating extinction risk from climate change. *Science* **348**, 571–573 (2015).
- 12. Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. *Curr. Biol.* **19**, 915–8 (2009).
- 13. Vanengelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. *J. Invertebr. Pathol.* **103 Suppl,** S80–95 (2010).
- 14. Department of Agriculture Food and the Marine. Ireland's National Apiculture Programme 2013 - 2016. (2016). at https://www.agriculture.gov.ie/media/migration/farmingsectors/beekeepingandho ney/nationalapicultureprogramme2013-2016/NationalApicultureProgramme161116.pdf>
- 15. Core, A. *et al.* A new threat to honey bees, the parasitic phorid fly Apocephalus borealis. *PLoS One* **7**, e29639 (2012).
- 16. Guzmán-Novoa, E. *et al.* Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. *Apidologie* **41**, 443–450 (2010).
- 17. Hges, M., Martín-Hernández, R. & Meana, A. Nosema ceranae in Europe: an emergent type C nosemosis. *Apidologie* **41**, 375–392 (2010).
- 18. Belzunces, L. P., Tchamitchian, S. & Brunet, J.-L. Neural effects of insecticides in the honey bee. *Apidologie* **43**, 348–370 (2012).
- 19. Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. *Annu. Rev. Entomol.* **52**, 81–106 (2007).
- 20. Henry, M. *et al.* A common pesticide decreases foraging success and survival in honey bees. *Science* **336**, 348–50 (2012).
- 21. Bortolotti, L. & Montanari, R. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. *Bull. Insectology* **56**, 63–67 (2003).

- 22. Yang, E., Chuang, Y., Chen, Y. & Chang, L. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). *J. Econ. Entomol.* **101**, 1743–1748 (2008).
- 23. Scheper, J. *et al.* Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. *J. Appl. Ecol.* **52**, 1165–1175 (2015).
- 24. Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. *Science* **347**, 1255957–9 (2015).
- 25. Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. *Annu. Rev. Entomol.* **53**, 191–208 (2008).
- 26. Kosior, A. *et al.* The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe. *Oryx* **41**, 79 (2007).
- 27. O'Flynn, C., Kelly, J. & Lysaght, L. *Ireland's invasive and non-native species trends in introductions*. (2014).
- 28. IUCN. A Global Standard for the Identification of Key Biodiversity Areas, Version 1.0. *First* edition. (2016). at <https://portals.iucn.org/library/sites/library/files/documents/2016-048.pdf>
- 29. Nowak, D. J. & Crane, D. E. Carbon storage and sequestration by urban trees in the USA. *Environ. Pollut.* **116**, 381–389 (2002).
- McPherson, E. G., Xiao, Q. & Aguaron, E. A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests. *Landsc. Urban Plan.* 120, 70–84 (2013).
- 31. Velasco, E., Roth, M., Norford, L. & Molina, L. T. Does urban vegetation enhance carbon sequestration? *Landsc. Urban Plan.* **148**, 99–107 (2016).
- 32. Revelli, R. & Porporato, A. Ecohydrological model for the quantification of ecosystem services provided by urban street trees. *Urban Ecosyst.* **21**, 489 (2018).
- 33. Fossitt, J. A. A Guide to Habitats in Ireland. (The Heritage Council, 2000).
- 34. Hopwood, J. L. The contribution of roadside grassland restorations to native bee conservation. *Biol. Conserv.* **141**, 2632–2640 (2008).
- 35. Klein, A.-M. *et al.* Importance of pollinators in changing landscapes for world crops. *Proc. Biol. Sci.* **274**, 303–13 (2007).
- Eilers, E. J., Kremen, C., Smith Greenleaf, S., Garber, A. K. & Klein, A.-M. Contribution of pollinator-mediated crops to nutrients in the human food supply. *PLoS One* 6, e21363 (2011).

- 37. Wilmer, P. *Pollination and Floral Ecology*. (Princton University Press, 2011).
- 38. Rader, R. *et al.* Non-bee insects are important contributors to global crop pollination. *Proc. Natl. Acad. Sci.* **113**, 146–151 (2016).
- 39. National Biodiversity Data Centre. *All Ireland Pollinator Plan 2015-2020*. (2015).
- 40. Department of Agriculture Food and the Marine in Ireland. *Irish National Action Plan for the Sustainable Use of Pesticides*. (2013). at https://www.teagasc.ie/media/website/crops/crops/NationalActionPlan_Sustainable eUsePesticides.pdf>
- 41. Smith, R. M., Thompson, K., Hodgson, J. G., Warren, P. H. & Gaston, K. J. Urban domestic gardens (IX): Composition and richness of the vascular plant flora, and implications for native biodiversity. *Biol. Conserv.* **9**, (2005).
- 42. Stanley, D. A. & Stout, J. C. Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. *J. Appl. Ecol.* **50**, 335–344 (2013).
- 43. Blackmore, L. M. & Goulson, D. Evaluating the effectiveness of wildflower seed mixes for boosting floral diversity and bumblebee and hoverfly abundance in urban areas. *Insect Conserv. Divers.* **7**, 480–484 (2014).
- 44. National Biodiversity Data Centre. Councils actions to help pollinators. National Biodiversity Data Series No. 12 (2016). at http://www.biodiversityireland.ie/wordpress/wp-content/uploads/Pollinator-Council-Guide-FINAL.pdf>
- 45. National Biodiversity Data Centre. How-to-guide Creation and management of a wildflower meadow. *National Biodiversity Data Series No. 13* (2017). at http://www.biodiversityireland.ie/wordpress/wp-content/uploads/Pollinator-How-to-Guide-4-wildflower-FINAL.pdf
- 46. National Biodiversity Data Centre. What is an invasive species? (2019). at http://www.biodiversityireland.ie/projects/what-is-an-invasive-species/
- 47. National Biodiversity Data Centre. Taxon Designation Group ID. (2019). at https://species.biodiversityireland.ie/?taxonDesignationGroupId=25>
- Combra, L., Corbet, S. A., Hunt, L. & Warren, B. Flowers, Nectar and Insect Visits: Evaluating British Plant Species for Pollinator-friendly Gardens. *Ann. Bot.* 83, 369–383 (1999).
- 49. National Biodiversity Data Centre. Ho-to-guide Hedgerows for Pollinators. (2016). at http://www.biodiversityireland.ie/wordpress/wp-content/uploads/Pollinator-How-

to-Guide-3-FINAL-1.pdf>

- 50. Larson, J. L., Kesheimer, A. J. & Potter, D. A. Pollinator assemblages on dandelions and white clover in urban and suburban lawns. *J. Insect Conserv.* **18**, 863–873 (2014).
- 51. Pisa, L. W. *et al.* Effects of neonicotinoids and fipronil on non-target invertebrates. *Environ. Sci. Pollut. Res.* **22**, 68–102 (2015).
- Sohn, L. *et al.* Exposure to a nicotinoid pesticide reduces defensive behaviors in a non-target organism, the rusty crayfish Orconectes rusticus. *Ecotoxicology* 27, 900–907 (2018).
- 53. Basley, K. & Goulson, D. Neonicotinoids thiamethoxam and clothianidin adversely affect the colonisation of invertebrate populations in aquatic microcosms. *Environ. Sci. Pollut. Res.* **25**, 9593–9599 (2018).
- Gibbons, D., Morrissey, C. & Mineau, P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. *Environ. Sci. Pollut. Res.* 22, 103–118 (2015).
- 55. IUCN. IUCN Red List Categories and Criteria. at <(http://www.iucnredlist.org/technicaldocuments/categories-and-criteria 2004)>

5. Appendices

5.1 Management guidelines for contractors

5.1.1 Pesticides

Pesticides (herbicides, fungicides and insecticides) should be used sparingly and only when necessary, for example in the treatment of invasive species like Japanese Knotweed. When spaying is required, do not spray until after the 15th April and be sure to leave buffer zones around key biodiversity areas (Fig 2a-2d).

5.1.2 Grass cutting

Collect clippings after cutting. The first cut should take place in April after the first flush of dandelions.

5.1.3 Hedge cutting

Hedge cutting is only permitted between the September 1st and February 31st.

5.1.4 Tree management

Tree felling and maintenance should be planned in advance and is only permitted between September 1st and February 31st.

5.1.5 Plants for Pollinators

The following section includes plant lists for various planting scenarios. For all future planting schemes within DCU at least 75% of the purchased plants will come from these lists (Table 4 and 5).

Common Name	Latin name	January	Febuary	March	April	May	June	July	August	September	October	November	December
Street Trees													
	Amelanchier x												
	grandiflora												
Juneberry Tree	'Robin Hill'												
	Crataegus												
	monogyna												
Upright Hawthorn	'Stricta'												
	Malus												
Pillar crab*	tschonoskii												
	Pyrus calleryana												
Callery pear*	'Chanticleer'												
	Sorbus acuparia												
Rowan	varieties												
	Tilia cordata												
Lime	'Greenspire';												
	Tilia x europaea												
Lime	'Euchlora'												
Open space trees													
Horse Chestnut	Horse Chestnut												
	Amelanchier												
	species (not A.												
	lamarckii which												
	may be												
Juneberry	invasive)												
	Catalpa												
Indian bean tree	bignonioides												
	Crataegus												
Hawthorn	species												

Table 4 List of plants for pollinators and birds and associated flowering month is highlighted in purple.

	Malus						
Apple	species/cultivars						
	Paulownia						
Foxglove tree	tomentosa						
Wild Cherry	Prunus avium						
Bird Cherry*	Prunus padus						
Pear	Pyrus species and cultivars						
	Sorbus						
Rowan	species/cultivars						
Willow	Salix aegyptiaca						
Willow	Salix alba						
	Salix alba						
Willow	'Liempde'						
	Salix alba var.						
Willow	vitellina						
	Tilia americana						
Lime	'Redmond'						
Lime	Tilia cordata						
Lime	Tilia x europea						
1 inc	Tilia						
Lime	platyphyllos						
Lime	Tilia tomentosa						
Native trees							
Hazel	Corylus avellana						
Willow	Salix spp.						
Blackthorn	Prunus spinosa						
Hawthorn	Crataegus monogyna						

	Cytisus						
Broom	scoparius						
Wild cherry	Prunus avium						
	Rubus						
Bramble	fructicosus agg.						
	Ligustrum						
Wild privet	vulgare						
Crab apple	Malus sylvestris						
Elder	Sambucus nigra						
Whitebeam	Sorbus aria						
	Sorbus						
Rowan	aucuparia						
Other							
	Viburnum						
Guelder rose	opulus						
lvy	llex aquifolium						
Gorse	Ulex europaeus						
Wild rose	Rosa spp.						
	Lonicera						
Honeysuckle	periclymenum						

Table 5 List of plants for pollinators and birds and associated flowering season. Ref: AIPP Planting Code

Common Name	Latin name	Autumn	Winter	Spring	Summer
Strawberry tree	Arbutus unedo				
Ebbinge's silverberry	Elaeagnus × ebbingei				
Silverthorn	Elaeagnus pungens				
Japanese aralia	Fatsia japonica				
Sage, autumn flowering	Salvia species				
Carmichael's monk's hood	Aconitum carmichaelii				
Simple-stemmed bugbane	Actaea simplex				
Michaelmas daisy	Aster species and hybrids				
Trailing bellflower	Campanula poscharskyana				
Dahlia	Dahlia species & hybrids				
Tree ivy	× Fatshedera lizei				
Purpus honeysuckle	Lonicera × purpusii				
Oregon grape	Mahonia species				
Musk willow	Salix aegyptiaca				
Sweet box	Sarcococca confusa				
Sarcococca hookeriana	Sarcococca hookeriana				
Laurustinus	Viburnum tinus				
Crocus, winter-flowering	Crocus species				
Winter aconite	Eranthis hyemalis				
Common snowdrop	Galanthus nivalis				
Hellebore, winter					
flowering	Helleborus species and hybrids				
Crocus, spring-flowering	Crocus species				
Armenian grape hyacinth	Muscari armeniacum				
Common star of					
Bethlehem	Ornithogalum umbellatum				
Wallflower	Erysimum species Wallflower				
Honesty	Lunaria annua				
Mediterranean spurge	Euphorbia characias				
Darwin's barberry	Berberis darwinii				
Japanese quince	Chaenomeles species				
Cornelian cherry	Cornus mas				
Dwarf Russian almond	Prunus tenella				
Allium ornamental	Allium species				
Snapdragon	Antirrhinum majus				
Crested poppy	Argemone platyceras				
Borage	Borago officinalis				
Canterbury bells	Campanula medium				

Sweet william	Dianthus barbatus		
Foxglove	Digitalis species		
Lesser calamint	Calamintha nepeta		
Macedonian scabious	Knautia macedonica		
Purple knapweed	Centaurea atropurpurea		
Rosemary	Rosmarinus officinalis		
Lavender	Lavandula species		

5.2 Habitats in DCU

Cultivated and Built Land

Buildings and artificial surfaces (BL3) cover approximately 21 ha of the surveyed area and is one of the habitats of least value to wildlife. However, this habitat does support some biodiversity. Plants recorded here include Buddleja (*Buddleja davidii*), Cat's Ear (*Hypochaeris radicata*) and Dandilions (*Taraxacum spp.*). The humid areas of concrete and tarmac harbour some infrequently recorded bryophytes and are of local importance for bryophytes. The rest of this habitat has generally been assessed as having negligible importance for biodiversity and atmospheric carbon sequestration.

Flower Beds and Borders (BC4) consist of roughly 0.7ha. This habitat type can occur in a mosaic with Scattered Trees and Parkland (WD5)³³. The species in this habitat are largely nonnative, ornamental species and this habitat type has previously been assessed as having low importance for biodiversity, however there are a number of plant species within this habitat that are important food sources for pollinators and birds. This habitat offers no significant atmospheric carbon sequestration.

Roughly 2 acres of horticultural land (BC2) exists on the Glasnevin Campus. The species within this category are mainly, vegetables, fruit crops, culinary and aromatic herbs, native trees and wildflowers and other ornamental plants. The site is used as a market garden and has 2 polytunnels, 40 apple trees and 80 current bushes. Some of the common wildflowers found here include charlock (*Sinapis arvensis*), dead-nettles (*Lamium spp*.), common chickweed (*Stellaria media*) and fumitory (*Fumaria spp*.). This habitat offers medium biodiversity value and low atmospheric carbon sequestration value due to the diversity of species located here and the current management practices i.e. organic growing with little disturbance to the soil. There are also a number of nesting sites for birds located here.

Grassland and Marsh

Amenity Grassland (GA2) occurs throughout all surveyed campuses and comprises roughly 5.3 ha in area. It occurs both in small pockets together with ornamental borders and single trees among buildings and carparks as well as covering larger areas such as sports pitches. This habitat is dominated by grasses such as Rye Grass (*Lolium spp.*) and Yorkshire Fog (*Holcus lanatus*) and commonly includes native wildflowers such as Daisy (*Bellis perennis*), Dandelion (*Taraxacum spp.*) clover (*Trifolium spp.*) and plantain (*Plantago spp.*). Due to current management practices which maintain the sward very tight this habitat is currently of limited biodiversity value and has generally been assessed as having low importance for biodiversity. The frequency of mowing of this habitat type allows for a net carbon outflux. If mowing was reduced on some sites containing this habitat, carbon emissions from grass cutting would be reduced and food and nesting resources for pollinators, birds and other insects would be increased.

Woodland & Scrub

Planted Broadleaved Woodland (WD1) occurs within the St Patricks and All Hallows Campuses covering approximately 1.3 ha. The woodland located in St Pats is largely dominated by natives such as Alder, Ash, Hawthorn and Oak. Non-natives are also found here including *Acer spp.*, Horse Chestnut (*Aesculus hippocastanum*), Prunus spp., and one invasive species Spanish bluebell (*Hyacinthoides hispanica*). This habitat has generally been assessed as having moderate importance for biodiversity and carbon sequestration.

Scattered trees and parkland (WD5) classifies habitats where scattered trees, standing alone or in small clusters, cover less than 30% of the total area under consideration but are a prominent of structural or visual feature the habitat ³³. This habitat type is located on each of the University's Campuses and comprises 3.1 ha.

Roughly 1 km of treelines (WL2) was recorded within the four DCU Campuses and they vary from young, recently planted treelines to lines of mature trees functioning as field boundaries. They include native species such as Alder (*Alnus glutinosa*) and Oak (*Quercus robur*) but are largely non-native species such as Leylandii (*Cupressus Leylandii*) Sycamore (*Acer pseudoplatanus*), Largeleaved Lime (*Tilia platyphyllos*), London Plane (*Platanus x acerifolia*), Common Lime (*Tilia x europaea*) and Beech (*Fagus sylvatica*). The biodiversity value varies from moderate to high value, depending on the particular treeline.

Lakes and Ponds

Roughly 3m² of category "Other artificial lakes and ponds" (FL8) is located in the community garden. A man made pond was created to alleviate flooding on the site. The nutrient status of this pond plants found here includes *Iris spp.*, pondweeds (*Potamogeton spp*.) and duckweeds (*Lemna spp.*) This category is of moderate biodiversity value as is it the only open water within the University Grounds.

5.3 Plant lists

Table 6 List of plant species currently growing within the four University Campuses and the date of the most recent record.

Species name	Common name	Most recent record
Acer campestre	Field maple	2018
Acer molis	Canadian maple	2018
Acer palmatum	Smooth Japanese-maple	2019
Acer pseudoplatanus	Sycamore	2019
Acer saccarinum	Silver maple	2018
Aesculus × carnea	Red horse-chestnut	2018
Aesculus hippocastanum	Horse-chestnut	2019
Alchemilla vulgaris agg.	Lady's-mantle	2014

Alliaria petiolata	Garlic Mustard	2014
Allium cepa	Onion	2014
Allium giganteum	Giant onion	2014
Allium sativum	Garlic	2014
Allium schoenoprasum	Chives	2014
Allium triquetrum	Three cornered garlic	2018
Alnus glutinosa	Alder	2019
Anemone nemorosa	Wood Anemone	2014
Anthoxanthum odoratum	Sweet Vernal-grass	2014
Anthriscus caucalis	Bur Chervil	2014
Anthriscus sylvestris	Cow Parsley	2014
Aphanes arvensis agg.	Parsley Piert	2014
Arbutus unedo	Strawberry-tree	2014
Arctium minus	Lesser Burdock	2014
Armeria maritima	Thrift	2014
Arum italicum	Italian arum	2019
Arum maculatum	Lords-and-Ladies	2014
Astilbe	False goat's beard	2014
Aubrieta deltoidea	Aubretia	2014
Aucuba japonica	Spotted-laurel	2014
Ballota nigra	Black Horehound	2014
Begonia grandis	Hardy Begonia	2014
Bellis perennis	Daisy	2014
Berberis thunbergii	Thunberg's Barberry	2014
Berberis vulgaris	Barberry	2014
Betula pendula	Silver Birch	2019
Betula pubescens	Downy Birch	2019
Betula utilis	Himalayan Birch	2014
Brachythecium rutabulum	Rough-stalked Feather-moss	2014
Brassica napus	Rape	2014
Brassica oleracea	Wild Cabbage	2014
Buddleja davidii	Butterfly-bush	2014
Buxus sempervirens	Box	2014
Calendula officinalis	Pot Marigold	2014
Calla palustris	Bog Arum	2014
Calluna vulgaris	Heather	2014
Calystegia sepium	Bindweed	2014
Camellia japonica	Common camellia	2014
Campanula rotundifolia	Harebell	2014
Capsella bursa-pastoris	Shepherd's-purse	2014
Cardamine pratensis	Cuckooflower	2014
Carex divulsa subsp. divulsa	Grey Sedge	2014
Carex nigra	Common Sedge	2014
Carex vesicaria	Bladder-sedge	2014

Carpinus betulus	Hornbeam	2014
Castanea sativa	Sweet Chestnut	2014
Castanea sativa	Sweet Chestnut	2014
Cedrus atlantica 'Glauca'	Blue atlas cedar	2018
Cedrus deodora	Deodor cedrus	2018
Centaurea nigra	Common Knapweed	2014
Cephalaria gigantea	Giant Scabious	2014
Cerastium fontanum	Common Mouse-ear	2014
Chamaecyparis lawsoniana	Lawson cyypress	2018
Chamerion angustifolium	Rosebay Willowherb	2014
Chrysanthemum segatum	Corn marigold	2017
Cirsium arvense	Creeping Thistle	2014
Cirsium vulgare	Spear Thistle	2014
Clematis armandii	Armand clematis	2014
Clematis vitalba	Traveller's-joy	2014
Convolvulus arvensis	Field Bindweed	2014
Cornus alba	White dogwood	2014
Cortaderia selloana	Pampas-grass	2014
Corylus avellana	Hazel	2019
Cotoneaster simonsii	Himalayan Cotoneaster	2014
Crataegus monogyna	Hawthorn	2019
Crataegus x media 'Paul's Scarlet'	Midland Hawthorn	2014
Crocosmia x crocosmiiflora	Montbretia	2014
Crocus tommasinianus	Early Crocus	2014
Cupressus macrocarpa	Monterey cypress	2016
Cyclamen	Cyclamen	2014
Cynara cardunculus	Globe Artichoke	2014
Deschampsia cespitosa	Tufted Hair-grass	2014
Dianthus caryophyllus	Clove Pink	2014
Dicksonia antarctica	Australian Tree-fern	2014
Digitalis purpurea	Foxglove	2014
Dryopteris filix-mas	Male-fern	2014
Echium vulgare	Viper's-bugloss	2014
Elytrigia repens	Common Couch	2014
Epilobium hirsutum	Great Willowherb	2014
Epimedium x versicolor	Bishop's hat	2014
Equisetum arvense	Field Horsetail	2014
Eucalyptus	Eucalyptus	2018
Euonymus europaeus	Spindle	2014
Euphorbia amygdaloides	Wood Spurge	2014
Euphorbia helioscopia	Sun Spurge	2014
Eurhynchium praelongum	Common Feather-moss	2014
Fagus sylvatica 'Purperea'	Beech	2014
Fatsia japonica 'Variagata'	Japanese aralia	2019

Festuca pratensis	Meadow Fescue	2014
Ficus carica	Fig	2014
Fragaria ananassa	Garden Strawberry	2014
Frangula alnus	Alder Buckthorn	2014
Fraxinus excelsior	Ash	2014
Fuchsia magellanica	Fuchsia	2014
Fumaria officinalis	Common Fumitory	2014
Galanthus nivalis	Snowdrop	2014
Galium aparine	Cleavers	2014
Geranium dalmaticum	Geranium	2014
Geranium endressii	French Crane's-bill	2014
Geranium robertianum	Herb-Robert	2014
Glebionis segetum	Corn marigold	2014
Glechoma hederacea	Ground Ivy	2017
Griselinia littoralis	New Zealand Broadleaf	2014
Gunnera tinctoria	Giant-rhubarb	2014
Hebe pinguifolia	Hebe	2014
Hebe speciosa	Hebe	2014
Hedera helix	lvy	2014
Helleborus niger	Christmas rose	2014
Helleborus orientalis	Lenten-rose	2014
Hemerocallis fulva	Day lily	2019
Heracleum sphondylium	Cow parsnip	2014
Hesperis matronalis	Dame's-violet	2014
Heuchera	Coral bells	2014
Hosta	Plantain lilies	2014
Hyacinthoides hispanica	Spanish Bluebell	2014
Hyacinthoides non-scripta	Bluebell	2014
Hyacinthus orientalis	Hyacinth	2014
Hydrangea macrophylla	Hydrangea	2014
Hypericum androsaemum	Tutsan	2014
Hypericum 'Hidcote'	St John's Wort	2014
Hypnum cupressiforme var. resupinatum	Supine Plait-moss	2014
Hypochaeris radicata	Cat's-ear	2014
Ilex aquifolium	Holly	2014
Ilex aquifolium 'Variagatum'	Holly	2014
Iris pseudacorus	Yellow Iris	2014
Iris sp. cultivar	Iris	2014
Juglans regia	Walnut	2018
Knautia arvensis	Field Scabious	2014
Lactuca sativa	Garden Lettuce	2014
Lamium hybridum	Cut-leaved Dead-nettle	2014
Lamium purpureum	Red Dead-nettle	2014
Lapsana communis	Nipplewort	2014

Larix decidua	Common larch	2018
Laurus nobilis	Bay	2014
Lavandula angustifolia	Garden Lavender	2014
Leucanthemum vulgare	Oxeye Daisy	2014
Libertia formosa	Chilean-iris	2014
Ligustrum ovalifolium	Garden Privet	2014
Ligustrum ovalifolium	Garden Privet	2014
Lolium perenne	Perennial Rye-grass	2014
Lonicera nitida	Wilson's honeysuckle	2017
Lonicera periclymenum	Honeysuckle	2014
Luzula sylvatica	Great Wood-rush	2014
Magnolia	Magnolia	2019
Mahonia x media	Hybrid mahonia	2014
Malus domestica	Domestic apple	2019
Malus pumila	Apple	2014
Malva sylvestris	Common Mallow	2014
Matricaria recutita	Scented Mayweed	2019
Medicago lupulina	Black Medick	2014
Mentha x piperita	Peppermint	2014
Mentha spicata	Spear Mint	2014
Mentha suaveolens	Round-leaved Mint	2014
Mericalus annuas	Annual mercury	2019
Metasequoia glyptrostroboides	Dawn redwood	2019
Molinia caerulea	Purple Moor-grass	2014
Molinia caerulea subsp. arundinacea	Moor grass	2014
Myosotis arvensis	Field Forget-me-not	2014
Narcissus agg.	Daffodils	2014
Nassella tenuissima	Argentine Needle-grass	2014
Orobanche	Broomrapes	2014
Orthotrichum affine	Wood Bristle-moss	2014
Papaver rhoeas	Common Poppy	2014
Parapholis strigosa	Hard-grass	2014
Parthenocissus henryana	Chinese Virginia-creeper	2014
Petasites fragrans	Winter Heliotrope	2014
Petroselinum crispum	Garden Parsley	2014
Philadelphus coronarius	Mock-orange	2014
Phlox paniculata	Garden phlox	2014
Phormium cookianum	Lesser New Zealand Flax	2014
Photinia × fraseri 'Red Robin'	Red Tip Photinia	2019
Phyllitis scolopendrium	Hart's-tongue	2014
Phyllostachys aurea	Golden Bamboo	2017
Pinus nigra	Austrian pine	2018
Pinus sylvestris	Scots Pine	2014
Pittosporum tenuifolium	Kohuhu	2014

Plagiomnium undulatum	Hart's-tongue Thyme-moss	2014
Plantago lanceolata	Ribwort Plantain	2014
Plantago major	Greater Plantain	2014
Platanus x hispanica	Plane	2018
Poa annua	Annual Meadow-grass	2014
Poa trivialis	Rough Meadow-grass	2014
Pogonatum urnigerum	Urn Haircap	2014
Polystichum setiferum	Soft Shield-fern	2014
Populus nigra	Lombardy Poplar	2019
Potentilla anglica	Trailing Tormentil	2014
Potentilla anserina	Silverweed	2014
Primula denticulata	Drumstick Primrose	2014
Primula veris	Cowslip	2014
Primula vulgaris	Primrose	2014
Prunella vulgaris	Selfheal	2014
Prunus avium	Wild Cherry	2014
Prunus laurocerasus	Cherry Laurel	2014
Prunus lusitanica	, Portugal Laurel	2014
Prunus padus	Bird Cherry	2014
Prunus serrulata	Japanese Cherry	2014
Prunus spinosa	Blackthorn	2014
Pteridium aquilinum	Bracken	2014
Pyracantha	Firethorn	2014
Quercus ilex	Evergreen Oak	2019
Quercus petraea	Sessile Oak	2014
Quercus robur	Pedunculate Oak	2014
Ranunculus bulbosus	Bulbous Buttercup	2014
Ranunculus ficaria	Lesser Celandine	2014
Ranunculus repens	Creeping Buttercup	2014
Rheum x hybridum	Rhubarb	2014
Rhododendron	Rhododendron	2014
Ribes nigrum	Black Currant	2014
Ribes rubrum	Red Currant	2014
Ribes sanguineum	Flowering Currant	2014
Ribes uva-crispa	Gooseberry	2014
Rosa sp. cultivar	Rose	2014
Rosmarinus officinalis	Rosemary	2014
Rubus caesius	Dewberry	2014
Rubus fructicosus agg.	Blackberry	2019
Rubus idaeus	Raspberry	2014
Rudbeckia	Black eyed susan	2014
Rumex acetosa	Common Sorrel	2014
Rumex obtusifolius	Broad-leaved Dock	2014
Ruscus aculeatus	Butcher's-broom	2014

	Cost Millow	2010
Salix caprea Salix cinerea	Goat Willow	2019 2014
Salix cinerea subsp. oleifolia	Grey willow Rusty Willow	2014
Salix cinerea subsp. olenolia Salix pentandra	Bay Willow	2014
Salix viminalis	Osier	2014
Salix virinais Salvia verbenaca		
	Wild Clary	2014
Sambucus nigra	Elder	2014
Sarcococca confusa	Sweet box	2014
Saxifraga x arendsii	Saxifrage	2014
Scilla verna	Spring Squill	2014
Senecio jacobaea	Ragwort	2014
Senecio vulgaris	Groundsel	2014
Sequoiadendron giganteum	Giant redwood	2019
Skimmia japonica	apanese skimmia	2014
Solanum crispum	Chilean potato tree	2014
Sonchus asper	Prickly Sow-thistle	2014
Sonchus oleraceus	Smooth Sow-thistle	2014
Sorbus aria	Common Whitebeam	2014
Sorbus aucuparia	Rowan	2014
Stachys byzantina	Lamb's-ear	2014
Stellaria media	Common Chickweed	2014
Stipa gigantea	Giant feather grass	2014
Succisa pratensis	Devil's-bit scabious	2019
Succisa pratensis	Devil's-bit Scabious	2014
Symphoricarpos albus	Snowberry	2019
Symphytum x uplandicum	Russian Comfrey	2014
Syringa vulgaris	Lilac	2014
Taraxacum officinale agg.	Dandelion	2014
Taxus baccata	Yew	2014
Thuja occidentalis	Northern White-cedar	2014
Thuja plicata	Western Red-cedar	2014
Tilia x europaea	Lime	2014
Torilis japonica	Upright Hedge-parsley	2014
Tortula muralis	Wall Screw-moss	2014
Trachycarpus fortunei	Chusan Palm	2014
Trifolium dubium	Lesser Trefoil	2014
Trifolium pratense	Red Clover	2014
Trifolium repens	White Clover	2014
Tulipa sp	Tulip	2018
Tussilago farfara	Coltsfoot	2014
Ulex europaeus	Gorse	2014
Ulmus glabra	Wych Elm	2014
Urtica dioica	Common Nettle	2014
Verbascum thapsus	Great Mullein	2014
•		

Verbena bonariensis	Argentinian Vervain	2014
Veronica chamaedrys	Germander Speedwell	2014
Veronica filiformis	Slender Speedwell	2014
Veronica persica	Common Field-speedwell	2014
Viburnum opulus	Guelder-rose	2014
Viburnum tinus	Laurustinus	2014
Viburnum x bodnantense	Arrowwood	2014
Vicia sepium	Bush Vetch	2014
Vinca major	Greater Periwinkle	2014
Viola tricolor	Wild Pansy	2014
Wisteria sinensis	Chinese Wisteria	2014
X Cuprocyparis leylandii	Leyland Cypress	2014

5.4 Other species

Table 7 Other Species recorded within the 4 DCU Campuses between 2014 and 2019.

			Most
			recent
Species name	Common name	Group	record
Pica pica	Black-billed Magpie	Bird	2017
Sylvia atricapilla	Blackcap	Bird	2014
Cyanistes caeruleus	Blue Tit	Bird	2019
Fringilla coelebs	Chaffinch	Bird	2014
Ficedula albicollis	Collard flycatcher	Bird	2017
Turdus merula	Common Blackbird	Bird	2017
Phasianus colchicus	Common Pheasant	Bird	2014
Sturnus vulgaris	Common Starling	Bird	2017
Columba palumbus	Common Wood Pigeon	Bird	2014
Streptopelia decaocto	Eurasian Collared Dove	Bird	2017
Corvus monedula	Eurasian Jackdaw	Bird	2017
Passer montanus	Eurasian Tree Sparrow	Bird	2014
Carduelis spinus	Eurasuan siskin	Bird	2017
Carduelis chloris	European Greenfinch	Bird	2014
Erithacus rubecula	European Robin	Bird	2017
Regulus regulus	Goldcrest	Bird	2017
Carduelis carduelis	Goldfinch	Bird	2019
Parus major	Great Tit	Bird	2014
Prunella modularis	Hedge Accentor	Bird	2017
Larus argentatus	Herring Gull	Bird	2014
Corvus cornix	Hooded Crow	Bird	2017
Delichon urbicum	House Martin	Bird	2014
Larus fuscus	Lesser Black-backed Gull	Bird	2014
Aegithalos caudatus	Long-tailed Tit	Bird	2014

Anas sp.	Mallard duck	Bird	2019
Larus canus	Mew Gull	Bird	2017
Motacilla alba subsp. yarrellii	Pied Wagtail	Bird	2017
Ficedula parva	Red-brested flycatcher	Bird	2017
Corvus frugilegus	Rook	Bird	2017
Turdus philomelos	Song Thrush	Bird	2014
Troglodytes troglodytes	Winter Wren	Bird	2014
Troglodytes troglodytes	Winter Wren	Bird	2014
Dumontinia tuberosa	Dumontinia	Fungus	2017
Arthopyrenia punctiformis	N/A	Fungus	2014
Ascodichaena rugosa	N/A	Fungus	2014
Athelia arachnoidea	N/A	Fungus	2014
Marchandiomyces aurantiacus	N/A	Fungus	2014
Coccinella septempunctata	7-spot Ladybird	Insect	2019
Calliphora vomitoria	Blue bottle fly	Insect	2014
Hemerobius humulinus	Brown lacewing	Insect	2014
Bombus lucorum agg.	Bumble bee	Insect	2019
Bombus pascorum	Common carder bee	Insect	2019
Forficula auricularia	Common Earwig	Insect	2014
Anthocoris nemorum	Common Flower Bug	Insect	2014
Vespula vulgaris	Common Wasp	Insect	2014
Helophilus pendulus	European hoverfly	Insect	2014
Eristalis arbustorum	European hoverfly	Insect	2014
Bombus hypnorum	Garden bumble bee	Insect	2014
Palomena prasina	Green Shieldbug	Insect	2014
Bibio marci	Hawthorn Fly	Insect	2014
Celastrina argiolus subsp. britanna	Holly Blue	Insect	2014
Apis mellifera	Honey Bee	Insect	2019
Musca domestica	House-fly	Insect	2014
Fannia canicularis	Lesser house fly	Insect	2014
Culicoides	Midge	Insect	2014
Mesembrina meridiana	Noon fly	Insect	2014
Anthocharis cardamines	Orange-tip	Insect	2014
Ichneumonidae	Parasitoid wasp	Insect	2014
Bombus lapidarius	Red tailed bumble bee	Insect	2014
Lasius niger	Small Black Ant	Insect	2014
Aglais urticae	Small Tortoiseshell	Insect	2014
Pieris rapae	Small White	Insect	2014
Andricus kollari	Wasp	Insect	2014
Xanthoria parietina	Common Orange Lichen	Lichen	2014
Xanthoria parietina	Common Orange Lichen	Lichen	2014
Arthonia radiata	N/A	Lichen	2014
Lecanora albescens	N/A	Lichen	2014
Caloplaca saxicola	N/A	Lichen	2014

Caloplaca holocarpa	N/A	Lichen	2014
Catillaria lenticularis	N/A	Lichen	2014
Amandinea punctata	N/A	Lichen	2014
Lecanora muralis	N/A	Lichen	2014
Ramalina fraxinea	N/A	Lichen	2014
Physcia caesia	N/A	Lichen	2014
Lecanora expallens	N/A	Lichen	2014
Lepraria incana	N/A	Lichen	2014
Lecanora conizaeoides	N/A	Lichen	2014
Parmelia sulcata	N/A	Lichen	2014
Phaeophyscia orbicularis	N/A	Lichen	2014
Punctelia subrudecta	N/A	Lichen	2014
Physcia adscendens	N/A	Lichen	2014
Candelariella reflexa	N/A	Lichen	2014
Candelaria concolor	N/A	Lichen	2014
Physcia tenella	N/A	Lichen	2014
Ramalina farinacea	N/A	Lichen	2014
Melanelia subaurifera	N/A	Lichen	2014
Hyperphyscia adglutinata	N/A	Lichen	2014
Lecanora chlarotera	N/A	Lichen	2014
Lecidella elaeochroma	N/A	Lichen	2014
Sciurus carolinensis	Eastern Grey Squirrel	Mammel	2014
Meles meles	Eurasian Badger	Mammel	2019
Oryctolagus cuniculus	European Rabbit	Mammel	2014
Homo sapiens	Man	Mammel	2014
Rattus sp.	Rat	Mammel	2018
Vulpes vulpes	Red Fox	Mammel	2014
Pipistrellus pygmaeus	Soprano Pipistrelle	Mammel	2014
Apodemus sylvaticus	Wood Mouse	Mammel	2014
Arion circumscriptus	Brown-Banded Slug	Mollusc	2014
Arion distinctus	Common Garden Slug	Mollusc	2014
Cornu aspersum	Common Garden Snail	Mollusc	2014
Cornu aspersum	Common Garden Snail	Mollusc	2014
Arianta arbustorum	Copse Snail	Mollusc	2014
Punctum pygmaeum	Dwarf Snail	Mollusc	2014
Arion ater	Great Black Slug	Mollusc	2014
Tandonia sowerbyi	Keeled Slug	Mollusc	2014
Hydrobia ulvae	Laver Spire Shell	Mollusc	2014
Limax flavus agg.	Leopard Slug	Mollusc	2014
Acicula fusca	Point Snail	Mollusc	2014
Cochlicella acuta	Pointed Snail	Mollusc	2014
Pyramidula pusilla	Rock Snail	Mollusc	2014
Zonitoides nitidus	Shiny Glass Snail	Mollusc	2014
Cochlicopa cf. lubrica	Slippery Moss Snail	Mollusc	2014

Limax	Slug	Mollusc	2014
Vallonia pulchella	Smooth Grass Snail	Mollusc	2014
		Non-	
Cylindroiulus punctatus	Blunt-tailed Snake Millipede	insect	2014
		Non-	
Lithobius forficatus	Brown centipede	insect	2014
		Non-	
Lumbricus terrestris	Common Earthworm	insect	2014
		Non-	
Armadillidium vulgare	Common Pill Woodlouse	insect	2014
		Non-	
Porcellio scaber	Common Rough Woodlouse	insect	2014
		Non-	
Oniscus asellus	Common Shiny Woodlouse	insect	2014
		Non-	
Cecidophyopsis ribis	Eriophyid mite	insect	2014
		Non-	
Cylindroiulus caeruleocinctus	Millipede	insect	2014
		Non-	
Cylindroiulus londinensis	Millipede	insect	2014
		Non-	
Lumbricus rubellus	Red Worm	insect	2014
		Non-	
Lumbricus festivus	Ruddy Worm	insect	2014
		Non-	
Ommatoiulus sabulosus	Striped Millipede	insect	2014
		Non-	
Tachypodoiulus niger	White-legged Snake Millipede	insect	2014

5.5 Biodiversity Action Plan Review Process

5.5.1 Annual report layout and check list

An annual report will be completed by the facilities managers from each of the four campuses. This report will be emailed to all staff and students and will include the following:

- 1. Information regarding future developments that may harm or benefit biodiversity and carbon sequestration.
- 2. The status and progress of each of the actions will be presented as: action complete, action in train or action not yet progressed.
- 3. The status of each action will be broken down by DCU's Biodiversity Action Plan's six objectives and will be presented as: actions will be presented as: action complete, action in train or action not yet progressed.

4. All information detailed here can be represented as an infographic used in press releases and for upload on the DCU website. For see 'All-Ireland Pollinator Plan All-Ireland Pollinator Plan Year 3 Review: At a Glance'.

5.5.2 Biodiversity Action Plan 2022-

The Biodiversity Action Plan 2022 onwards should build upon DCU's Biodiversity Action Plan 2019-2022.

Changes to the BAP 2022- will include:

- 1. A list of the most appropriate tree species to reduce run off.
- 2. A list of plants that are optimum for reducing glare and ameliorate temperature and humidity.
- 3. A list of Invasive plat spies and there specific location.

Using Criteria A to E below, KBA should be monitored and identified and offered levels of protection i.e. using the management guidelines in section 5.1.

Criteria A. Threatened biodiversity

Threathened species were evaluated based on the IUCN conservation status ⁵⁵.

- Three or more species listed on Annex 1 (30 points)
- Two or more species listed on Annex 1 (20 points)
- One or more species listed on Annex 1 (10 points)
- No species listed on annex (0 points)

Critera B. Variety of species

- Number of species >30 (4points)
- Number of species >20 but <30 (3 points)
- Number of Species >10 but <20 (2 points)
- Number of Species <10 (1 point)

Criteria C. Uniqueness of habitat

- Habitat not found anywhere else and undisturbed by human influence (4 points)
- Habitat found elsewhere and undisturbed by human influence (3)
- Habitat not found anywhere else and disturbed by human influence (2)
- Habitat found elsewhere and disturbed by human influence (1)

Criteria D: Number of native plant species

• Number of native species >15 (4points)

- Number of native species >10 but <15 (3 points)
- Number of Species >5 but <10 (2 points)
- Number of Species <5 (1 point)

Criteria E. Potential carbon sink

- Tree dominated area (at least 10 m2) with limited human interference (4 points)
- Lawn or planted area (at least 10 m2) with limited human interference (4 points)
- Tree dominated area (at least 10 m2) with moderate human interference (3 points)
- Lawn or planted area (at least 10 m2) with moderate human interference (3 points)
- Area with high level of human interference and high vegetation cover (2 points)
- Area with high level of human interference and low vegetation cover (1 points)
- Area with high level of human interference and no vegetation (0 points)