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Abstract: Soil moisture is a key parameter of the climate system as it relates to plant transpiration
and photosynthesis and impacts land–atmosphere interactions. Recent developments have seen
an increasing number of electromagnetic sensors available commercially (EM) for soil volumetric
water content (θ). Their use is constantly expanding, and they are becoming increasingly used
for agricultural, ecological, and geotechnical applications and climate research, providing decision
support and high-resolution data for models and machine-learning algorithms. In this study, a
soil moisture sensor network consisting of 10 Sense Cap capacitance-based sensors is evaluated.
Analytical performance of the sensors was determined based on laboratory and field measurements
with dielectric permittivity (ε) standards and soil media substrates. Sensor response normalisation to
standards of known εwas found to reduce intersensor variability and provide robust estimates of θ
in soil samples with known θ. Cross-comparison with a time-domain reflectometry (TDR) instrument
carried out in two soil media demonstrates good agreement between the two probes throughout the
tested range. The data communication performance of the network was evaluated in terms of packet
drop rate at different ranges and sampling frequencies. It was noticed that the drop rate increased
with distance from the gateway, while sampling frequency had no effect. Sources of errors associated
with probe installation were identified and recommendations are provided for sensor deployment.
The off-the-shelf all-in-one solution provided by Sense Cap is low cost, user friendly and suitable
for implementation at temporal and spatial scales once the identified shortcomings are addressed.
The evaluation presented aims to aid stakeholders and users involved in soil and land management
practices including crop production, soil conservation, carbon sequestration and pollutants transport.

Keywords: dielectric permittivity; LoRaWAN; TDR; soil moisture

1. Introduction

Soil moisture is an essential parameter for irrigation management, transport of pol-
lutants and estimation of energy, heat and water balances [1]. Soil moisture is one of the
most important soil spatial-temporal variables due the highly heterogeneous nature of
soils which in turn drives water fluxes, evapotranspiration, air temperature, precipitation
and soil erosion [2]. The capacity of land to act as a carbon sink critically depends on
the nonlinear response of carbon fluxes to soil moisture and on land–atmosphere interac-
tions [3]. Soil moisture can reduce primary production [4,5] and intensify climate extremes
through land–atmosphere feedbacks [2]. Traditionally, a range of methods exist for mea-
suring soil moisture and include thermogravimetric, neutron scattering and the use EM
sensors [1]. Emerging techniques include ground-penetrating radar [6], the measurement
of cosmic neutrons [7,8] and remote sensing [9]. Although the emerging techniques are
attractive due to their spatial capabilities, they have limitations. For example, remote
sensing only captures soil moisture from the top soil layers, provides large-scale estimates
(km resolution) and does not resolve all the forms of land water storage. Ground-truth
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data remain crucial for the calibration and validation of remote sensing products [10]. Such
data can be obtained using gravimetric sampling, which is a labour-intensive, destructive
technique, or through the use of EM sensors which can provide continuous high-frequency
data and spatial distribution when used in a network [11]. EM sensors respond to the soil
dielectric permittivity (ε) which is used to determine θ. Time-domain reflectometry (TDR)
and transmissometry (TDT) sensors operate in the GHz range, while the impedance and
capacitance sensors operate at lower frequencies from 20–300 MHz [12,13]. In general,
low-frequency sensors are much cheaper but more sensitive to cofounding effects of salinity,
temperature, soil texture variability and imaginary dielectric permittivity [12,14]. Though
the TDR-method-based sensors are regarded as the most accurate EM-based technique for
θ, their use in distributed sensor networks is limited due to the high cost. Instead, low-
cost sensor networks are being increasingly employed for climate research [11], irrigation
management [15–17] and validation of spatial methods [10,18].

Soil moisture sensors operating within wireless sensor networks (WSNs) provide a
significant reduction in wiring and harness and offer enhanced flexibility in network design
and implementation, are easier to deploy and cost effective. Over the past few decades, a
variety of wireless communication protocols have been designed and adopted for different
applications. Each of these protocols are designed to meet specific requirements suitable
for a particular set of applications. Mostly, wireless communication networks are evaluated
based on their characteristics such as transmission range, data rate and power consumption.
Wireless communication systems with high data rate (due to usage of higher frequency)
can only support short-range transmission (due to limited wavelength). For example, Wi-Fi
can support high data rate but can only support short-range data transmission. ZigBee
and Bluetooth support a short range with low data rate designed for applications requiring
point-to-point short-range data transmission. Cellular networks (2G to 5G) support long-
range and high data rate transmission, but often struggle due to high power consumption
and data transmission costs due to limited bandwidth and high-cost infrastructure. While
each of these protocols are suitable for a certain set of applications, there is no one solution fit
for all wireless communication protocols. For smart farming and environmental monitoring,
a wide coverage over a large geographical area is often required and usually sensors must
be battery-powered due to their remote location. LPWAN is a wireless technology with
characteristics such as large geographical coverage, low bandwidth, and data rate suitable
for sensor observations captured at long intervals and low power consumption, which
make it suitable for environmental monitoring applications. LoRaWAN technology is
currently one of the most promising protocols for wireless communication. This network
is relatively easy to implement, has a ready-to-use security layer and a guarantee of wide
coverage with minimal maintenance and low energy consumption, which is ideal for
large-scale use [19]. LoRaWAN-enabled soil moisture sensors are commercially available,
such as DecentLab (Dübendorf, Switzerland), AMIT Wireless (Tainan, Taiwan), Agro Sense
(Budapest, Hungary), ICT International (Armidale, Australia), TekBox (Woodhurst, UK),
SensoTerra (Utrecht, The Netherlands) and Seed Studio (Shenzhen, China). Among these
suppliers, Seed Studio though their Sense Cap range provide a full solution, including
gateway and data management at the lowest cost on the market (sensor node—EUR 185,
gateway—EUR 385). The overall sensor network set-up is simple, fast and does not require
specialised training or technical knowledge.

The objectives of this study are to (1) determine the analytical performance In measur-
ing dielectric permittivity in liquids of known ε, (2) evaluate the performance in measuring
different θ in soil samples and through comparison with TDR instrumentation (3) study
the data communication capabilities of the sensor network at various ranges and node
sampling frequency and (4) provide recommendations for sensor deployment and how to
limit the sources of error associated with drift and field installation.
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2. Materials and Methods
2.1. Instrumentation

LoRaWAN Outdoor Gateway (part number 102991154) and 4× soil moisture and
temperature sensors (part number 101990564) were procured from Mouser Electronic,
Buckinghamshire, UK with the remaining 6 units procured from DigiKey, Ireland (Thief
River Falls, MN, USA). A 4.5 dBi LoRa antenna, 868 MHz, was procured from Paradar,
London, UK, while the antenna extension cable was procured from Radionics, Dublin,
Ireland. The time-domain reflectrometer-based soil profiler, SoilVUE™ (parameters: ε,
temperature, bulk electrical conductivity and θ) and the CR 300 data logger were procured
from Campbell Scientific, Loughborough, UK. The Sense Cap node consists of the sensing
element (temperature, ◦C and θ, %) and the sensor node controller which houses the
LoRa communication module, battery and low-power microcontroller (Figure 1). The data
communication architecture relies on LoRaWAN gateways to provide the coverage for data
collection from the nodes and data upload to the cloud via 4G or Ethernet (Figure 1). For
this study, the data were retrieved from the Sense Cap portal and further archived into an
SQL database.
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2.2. Reagents and Methods

Isopropyl alcohol (IPA) (99.5%), methanol (99.5%), acetic acid 98% (AA) and ethanol
(99.5%) were all procured from Sigma Aldrich, Arklow, Ireland a subsidiary of Merck KGaA
(Darmstadt, Germany).

2.2.1. Intersensor Variability in Dielectric Standards

To determine intersensor variability, 10 sensor units were tested in liquid media and air
of known ε. Sensors were fully immersed and allowed to collect 5 readings in each standard
at 20 ± 1 ◦C. Apart from acetic acid, for which only one measurement was collected, all
measurement were collected in triplicate.

2.2.2. Soil Testing

Materials used in the experiments consisted of garden soil substrate (clay loam soil)
and potting soil substrate (peat moss soil). For sample preparation, soils were air-dried for



Sensors 2022, 22, 987 4 of 13

one week. Root material and fibres were removed, and the soil was sieved through a 5 mm
sieve. The mixed-cell method was used to prepare sample with incremental water content.
Known volumes of water were added via spraying while soil mixing was carried out using
a paddle mixer. For the comparison with the TDR sensor, a bespoke sample holder of
approximately 15 L volume was built (see Section 3.2) to allow testing. Packing of soil was
carried out through the subsequent addition of material in layers and compaction to avoid
air gaps and voids. The volumetric water content of the samples was determined using
the gravimetric method and the bulk density. A soil sample ring (Ø 50 mm, height 51 mm)
was used to collect fractions from the prepared samples, which were weighted before and
after air-drying. The TDR sensor was positioned in the middle of the sample container,
with a soil thickness around the sensor of at least 5 cm. Because the volume of influence for
the TDR instrument extends 1.5–2 cm from the rods, the Sense Cap sensors were placed at
least 3 cm from the rods. To limit evaporation during the experiment, the sample holder
was wrapped in polyethylene film. At least 10 readings were collected from all sensors
for each sample (5 min sampling frequency) by shuffling the Sense Cap sensors at various
locations along the soil sample. The TDR collects data at 9 distances (i.e., 5, 10, 20, 30, 40,
50, 60, 75 and 100 cm) which were subsequently averaged to provide 1 measurement for
each sample.

2.2.3. Data Communication Testing

The data communication performance of the network was evaluated as a function
of transmission delay and packet drop rate at different ranges and sampling frequencies.
Ranges and sensor nodes are shown in Table 1, and these conditions were kept constant
throughout the study. Sensors were allowed to run between 24–48 h at sampling frequencies
of 5, 10, 30 and 60 min, respectively. The test site consisted of a busy urban environment
with no clear line of sight between the gateway and the nodes.

Table 1. Distance from the gateway for each group of sensor nodes.

Distance from Gateway (m) 40 100 300 460

Node ID 1, 2 3, 4 5, 6 7, 8

3. Results and Discussion
3.1. Sensor Performance Evaluation with Known Dielectric Standards and Intersensor Variability

Although sensors with the same manufacturer part number were ordered, two slightly
different probes were received. The first type of probe (nodes 3 to 10) consists of a 2.77 cm-
diameter cylindrical head with three, 0.3 diameter tines protruding for 7 cm, while the
second type (nodes 1 to 3) consists of a 2.7 cm-diameter cylindrical head with three,
0.4 diameter tines protruding for 5.5 cm. The main difference between the two types is
the length of the tines and the response variability between probes in the same sample. In
terms of the operation principle, the sensor operates similarly to the WET sensor described
previously [12,20]. Briefly, the sensor returns a voltage at a fixed frequency (70 MHz).
Capacitance of the material between the tines is measured, from which dielectric properties
of the medium are inferred using a sensor calibration file. In the final step, measured ε is
used to calculate θ according to Topp’s equation [21], where ε is the apparent dielectric
permittivity of the medium and θ is the volumetric water content.

θ = 4.3 × 10−6ε3 − 5.5 × 10−4ε2 + 2.92 × 10−2ε− 5.3 × 10−2 (1)

To address the various soil property effects in EM-based measurements for θ, soil-
specific calibrations are often recommended, although in general, suppliers provide factory-
determined calibration equations. The performance of such factory calibrations has been
reported in detail previously for the most common EM sensors for different soil textural
classes [12]. Although multiple equations exist as linear and nonlinear, to estimate θ from
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sensor response [12] it is critical to minimise intersensor variability (i.e., the degree of
variation in response among different sensor units) to provide reliable data from spatially
distributed sensors. Permittivity is the physical property that drives the θ determination,
and it is easier to provide a known permittivity using dielectric liquids than to provide a
known θ in soil (i.e., due to soil heterogeneity or hydrostatic water distribution) [22]. The
use of liquids with known dielectric permittivity values reduces the variability associated
with solid media and provides a reproducible approach to sensor screening. Liquids
are “ideal” dielectric media because of their well-defined properties which overcome
complications associated with the use of soil such as air gaps near conductors and density
variations [22]. For this purpose, a range of solvent types and mixtures were selected to
cover the ε range (Table 2). The SenseCap sensors used only output the temperature and
θ (%) data, while the ε data are only available through the serial connection. Equation (1)
(used by the manufacturer) was utilised to solve for ε from θ. The average ε presented in
Table 2 shows a good correlation between the εs (standard dielectric permittivity) and εa
(measured dielectric permittivity) for the low range (1–24.5) for all the nodes. A significant
shift is noticed starting with methanol, where all the sensors overestimate the εs. A similar
effect has been reported before for the 10HS sensor with slight overestimation in the 0–37 ε
range [23]. In this case, the error is larger, which suggests that the calibration file used is
not ideal. It is possible that calibration was achieved using a two-point calibration (i.e.,
in air and water). Standardising the sensor response to εs offers two key advantages: it
reduces the intersensor variability and converts the sensor response to a more accurate ε
which in turn can be used for more reliable θ calculations. Standardisation can be achieved
by converting the sensor output θa (%) to εa and finding the equation between εa and εs
or by finding the equation between θa (%) and εs. The later approach was used as it was
found to provide better root-mean-square error values (RMSE) for the 1–32.5 range and
R2 > 0.98 for all nodes. Unit-specific standardisation equations in dielectric permittivity
standards were developed for each node and two example are provided in Figure 2.

Table 2. Measured εa and intersensor variability for 10 units.

Media εs (F m−1)
εa (F m−1)

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10

Air 1 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88
AA 7.25 * 8.71 8.11 8.23 7.07 7.48 6.56 7.37 7.58 7.44 7.32
IPA 17.9 18.10 ± 0.06 16.19 ± 0.21 16.85 ± 0.144 18.10 ± 0.22 17.22 ± 0.11 16.84 ± 1.01 18.26 ± 0.55 18.11 ± 0.52 18.51 ± 0.08 17.18 ± 0.67
Ethanol 24.5 27.62 ± 0.05 23.80 ± 0.18 24.69 ± 0.49 24.70 ± 0.90 22.41 ± 0.05 22.95 ± 1.45 24.45 ± 0.43 24.20 ± 0.93 25.88 ± 0.46 24.81 ± 2.08
Methanol 32.5 48.17 ± 0.22 46.68 ± 0.39 48.59 ± 0.44 43.41 ± 0.10 35.42 ± 1.38 39.11 ± 0.19 41.94 ± 0.30 40.66 ± 0.25 38.61 ± 1.15 42.44 ± 1.11
Mix 1 ** 42.99 ** 67.07 ± 1.44 62.77 ± 1.61 65.04 ± 1.63 53.01 ± 1.14 47.66 ± 1.02 49.96 ± 0.99 51.35 ± 1.37 51.16 ± 1.16 52.91 ± 0.13 50.54 ± 0.25
Mix 2 ** 60.9 ** 78.61 ± 1.11 76.98 ± 1.84 76.88 ± 1.88 77.87 ± 0.23 75.50 ± 1.31 80.25 ± 2.40 77.61 ± 1.34 79.02 ± 0.79 78.60 ± 1.55 75.58 ± 2.58
H2O 80.1 81.36 ± 0.05 81.30 ± 0.29 81.39 ± 0.06 81.14 ± 0.01 81.14 ± 0.25 81.17 ± 0.03 81.15 ± 0.02 81.12 ± 0.04 81.17 ± 0.07 81.12 ± 0.02

AA—Acetic acid (98%). IPA—Isopropyl alcohol. εs—dielectric permittivity of standards, at 20 ◦C. εa—apparent
dielectric permittivity, measured by the sensors and retrieved using Equation (1); averages reported for triplicate
measurements with 5 readings/replicate with the exception of AA where 3 readings were collected. * Dielectric
permittivity of AA (98%) was obtained from [24]. ** Mixture 1 and Mixture 2 were prepared from volumetric
ratios of water and ethanol from [25].

It was found that the shorter probes (nodes 1–3) produced consistently higher read-
ings than the longer probes (nodes 4–10), as shown in Table 2. Applying the standardiza-
tion equations was found to reduce the intersensor variability. An example is shown in
Figure 3a,b for a set of samples prepared by incremental addition of water, where inter-
sensor variability is reduced considerably at the extremities of the θ range. For these
experiments, Equation (1) was used to compute the standardised θ from εs. In addition, the
standardization corrects for the overestimation of εs and the standardised θ (θS-Sense Cap,
Figure 3b) values are much closer to the measured θ (R2 = 0.99, slope = 1.027). Another
example to support the response standardisation in shown in Figure 3c,d as time series
for 4 weeks of data, with all 10 sensors deployed at approximately 5 cm below the root
line. Note the Y axis are identical in both panels to facilitate direct comparison of raw and
standardised data. As before, the intersensor variability and θ are reduced.
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with increasing θm in prepared soil samples, error bars represent the standard deviation of at least
9 measurements, 3 measurements at 3 different positions in the sample (b) standardised sensor
response to θ and linear relationship between actual and estimated θ; (c) raw response time-series
data; (d) standardised response time-series data; (e) experimental set-up for data in (c) showing
sensor installation within close proximity to each other, at approximately 5 cm depth.

Furthermore, data collected in Table 2 are essential to providing quality control (QC)
for when sensors are operating in situ. Sensor drift due to corrosion, or hardware issues, can
cause sensor response to deviate from the real value. Often, this response drift is overlooked,
and ‘bad’ data can be taken as reliable, unless QC measures are in place. Identifying sensor
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nodes that are malfunctioning at an early stage and discarding or correcting the associated
data is good practice and cost effective.

3.2. Cross-Comparison with TDR Sensor for Varying θ

There are two common methods used for laboratory and field calibration of soil
moisture sensors [23,26]. The more commonly used method, the mixed-cell method or the
disturbed calibration method, uses measurements made in cells containing soil mixed with
different known amounts of water to provide distinct points describing the relationship
between the ε and θ [26]. The second method is known as the undisturbed calibration
method, or the infiltration-addition method, and was described previously [27]. The main
difference between the two is the soil structure which is removed when using the first
method through soil sieving, grinding and subsequent mixing with water. Most sensor
manufacturers recommend that calibration is undertaken on soil in which the structure has
been removed, although it is argued that ideally the structure should be maintained to limit
uncertainty associated with the pore size distribution and the small volume of influence of
some probes. Due to the size of the TDR instrument used (Figure 4c), the mixed-cell method
was used in this study although it is in general more laborious and results in variable bulk
densities. Two types of soil substrates were used for the cross-comparison study: garden
soil substrate (clay loam soil) and potting soil substrate (peat moss soil). None of the soils
tested showed a good fit with the Topp’s equation, although polynomial third equation
models could be fitted to the experimental data to provide R2 > 0.99 (Figure 4a,b; see insets
for coefficients). Such soil-specific calibration curves are generally developed for field
application with soil samples from the site, and it has been shown previously that both
these types of soils tend produce high RMSD values when fitted with the Topp equation.
For example, results are in agreement with previous results on clay and rockwool [23]. The
potting soil substrate (peat moss soil) used here can be classified as organic soil, for which
the response seems to be best described by Schapp’s equation for organic forest soils [28]
with a similar response reported previously [12]. The offset from Topp’s equation for these
types of soils is driven by the lower density and higher porosity of the solid phase [29].
The garden soil substrate used can be classified as clay-rich soil, for which deviation from
Topp’s equation were reported before with increasing clay content [12,20]. It is considered
that this deviation is due to the particle shape, clay mineralogy and high surface area
(bound water) which in turn alter the εa [12]. Another reason proposed is the nonrigid
structure of many clay minerals and their ability to shrink and swell, which could maintain
connectivity between interaggregate pores at low water contents [30]. In turn, this effect
produces lower observed ε at low θ and higher ε at high θ in relation to the Topp’s function,
as noticed here (Figure 4a).

In this experiment, the main aim was to compare the low-cost sensor’s response as
dielectric permittivity with the TDR instrument. For both soils, the Sense Cap probes
overestimate ε by comparison with the εTDR (Figure 4a,b,d). This offset is minimal in the
potting soil substrate, with slightly higher εSenseCap throughout the tested range but in
good agreement with the εTDR. On the other hand, there is a significant overestimation
in the garden soil substrate, particularly the low–middle range. These differences can be
attributed to differences in the measurement frequency and operation mode (capacitance vs.
TDR) [12], or variations in sensor characteristics including probe geometry, printed circuit
board design, and sensor head sensitivity [31]. Additionally, observed differences could be
a soil packing artefact where the lower εTDR in the middle region is due to the presence of
more air pockets. Since the TDR measurements were collected as an average of data coming
from all the rods along the profiler and from a much higher volume of influence, it is
possible more air pockets are present. It is worth noting, the results are consistent with the
response of Wet2, a similar sensor in design and operation mode, where previous studies
report an overestimation of εwhen compared to the TDR instrumentation [12,32,33].
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Figure 4. Comparison of Sense Cap sensors with the TDR instrument; relationship between the actual
θm and the εa measured with the Sense Cap and TDR sensors (see legend) in garden soil substrate
(a) and potting soil substrate (b); error bars on the εTDR represent the standard deviation of at least
45 readings (5 readings/depth, 9 depths along the probe), εSenseCap is the average of 5 readings/unit
(c) experimental set-up showing the soil sample holder and sensor placement in the same sample—
example provided for garden soil substrate; (d) linear relationship between standardized εSenseCap

and εTDR (see figure insets).

3.3. Sources of Errors

The accuracy and precision of the sensor data is dependent on sensor performance
and sensor installation. Custom-designed sensor deployment tools are usually provided by
high-end sensor manufacturers to reduce user errors. For low-cost sensors however, such
tools are not provided. Furthermore, in most cases, no sensor deployment recommenda-
tions or guidelines are given. In this context, a series of installation configurations were
investigated to determine sensor response variability and to provide sensor installation
guidelines. Measurement errors were observed particularly when the tines of the probe
are partially exposed to air or air gaps are present. This can happen when the probe is
not fully pushed into the soil, and given that the dielectric permittivity is a function of
the volume influence, lower readings are observed (Figure 5c). Another example which is
more common and requires considerable attention is the insertion of an air gap between
the probe and the soil through probe disturbance (Figure 5b). This can happen immediately
or during probe installation and can be caused by accidentally moving the probe from its
original position or after covering of the probe with soil. Tines’ deflection, caused by very
dry compacted soil and tines angular off-set has also been observed. Figure 6d shows an
example of data associated with this error in ethanol. Upon installation, it is not possible to
know if the tines are parallel or angled, which reduces the volume of influence of the probe
and causes an increase in ε. A good approach to minimise this is to check and align probe
tines to be parallel and/or to use a tool for piloting the holes.
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3.4. LoRaWAN Performance

LoRaWAN technology is well-known for its long-range data acquisition with low
power consumption, however LoRaWAN has limited messaging capabilities which may
cause transmission delay or even data loss in the network. Therefore, it is useful to evaluate
the data communication capability of the sensor network. Various settings in the evaluation
can have an effect on the data transmission and the Packet Error Rates (PERs) of the network.
A high PER will consequently increase the duration of data transmission. Therefore, by
analysing the transmission time between the sampling time (at individual nodes) and the
data collection time (i.e., the time at which the gateway receives the data), it is possible
to determine the delay. The delay includes uplink (time on air) and the default time
offsets for receiving the frame on the gateway side [34]. Since the time stamp associated
with the individual nodes collecting a measurement is not available, it was estimated
using the sampling frequency at the node and the t = 0 (i.e., the time stamp at which
the nodes collect the first measurement with the new sampling frequency). Using the
newly estimated sampling times and the time difference between two adjacent samples
it was possible to calculate the delay (Figure 6). The delay medians for the four sampling
frequencies are 31 s, 31 s, 32 s and 32 s, respectively. Thus, there is no observed significant
difference in data transmission delay among different sampling rates. However, as shown
in Figure 6, there is an increase in the median delay with distance from the gateway,
independent of the sampling frequency. For example, in the “30 min per sample” subplot,
the IQRs of delays for the distances from 40 m to 460 m are 0, 0.017, 0.383 and 0.458 min,
respectively, while the medians for the distance 100 m, 300 m and 460 m are 0.133, 0.517 and
0.55 min. This observation is a consequence of the Adaptive Data Rate (ADT) scheme used
in LoRaWAN, which aims to minimise energy consumption and maximize throughput
by adjusting the data rate for every end node. ADR controls the transmission parameters,
namely Bandwidth (BW), Spreading Factor (SF), Transmission Power (TP) and Coding.
Rate (CR) [35]. ADR changes the data rate based on simple rules. For example, if the link
budget is high, the data rate can be increased by increasing the SF, while if the link budget
is low, the data rate can be lowered by decreasing the SF [36]. The sensors tested operate at
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an SF between 7–12, and it is known that large SFs allow for a longer communication range
while increasing the time on-air and consequently the off-period duration [36]. Accordingly,
there is trade-off between SF and transmission range, with lower delays and lower SFs
present for shorter ranges [36]. The higher delay for the nodes positioned at 40 m nodes
was caused by the positioning in relation to the gateway. The sensor nodes at the other
distances were in the antenna field of view (i.e., facing the antenna) while the nodes at 40 m
were positioned behind it. This was later confirmed to be the cause, by positioning the
nodes in the same field of view.
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In addition to the four ranges presented here, a fifth range of approximately 740 m was
originally used in the experimental design. However, this range was excluded from the
analysis as more than 50% of the data packets were lost. According to the manufacturer’s
specifications, the antenna should provide a range of up to 2 km with no clear line of sight
and up to 10 km with a clear line sight, which is not substantiated by these results. This
finding prompted the replacement of the included Sense Cap antenna (Antenna A) with a
4.5 dBi LoRa antenna, 868 MHz, from Paradar, UK (Antenna B). An initial investigation
revealed promising results for Antenna B with a range of approximately 1.5 km and with
no obvious data loss. As a cross-comparison for data drop rate, the tests carried out with
Antenna A were reproduced over a period of 12 days with Antenna B, maintaining the
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same distances from the gateway. Given fixed data sampling frequencies, the total number
of packages can be estimated and the drop rate can be calculated as:

drop rate =
total number of packages − number of received packages

total number of packages
(2)

It was found there is no significant difference between the two antennas for the range
tested and that the drop rate increases with range (Table 3). While Antenna A had a
smaller drop rate at shorter ranges it shows a higher drop rate at higher ones. The % drop
rate for the two antennae is consistent with previous reports when LoRaWAN is used for
environmental applications [37]. Data loss through operational issued or sensor drift can
have a deleterious effect on the overall sensor network performance and is not desirable.
Two options are available to mitigate data loss: increase the overall data transmission
performance or use imputation algorithms to introduce missing values and maintain the
sample size [37].

Table 3. Communication data drop rate.

Range 40 m 100 m 300 m 460 m

Antenna A 5.48% 1.15% 3.83% 13.64%
Antenna B 6.81% 1.91% 4.91% 9.69%
Nantenna A 1569 1560 1565 1547
Nantenna B 2510 2511 2506 2509

N—the total number of packages (the maximum number of packages calculated for each node from the sampling
frequency and time stamps).

4. Conclusions

This study demonstrates a low-cost soil moisture sensor network based on laboratory
and field measurements with dielectric permittivity standards and soil media. The embed-
ded sensor calibration, in-built within each sensor node, does not accurately predict the
ε of liquid standards which consequently leads to inaccurate θ estimations. Namely, two
shortcomings were identified: the sensors overestimate the εs particularly for values > 32,
and a high intersensor variability is present between the two sensor types tested. To
normalise the sensor output, the raw response for each unit was standardised to the εs,
through unit-specific equations. This approach was found to reduce the intersensor vari-
ability and provide robust estimates of θ in soil samples with known θ. Furthermore,
when the sensor was tested against a TDR instrument, the two probes were found to be
in good agreement throughout the tested range. Although the ε was overestimated for
the low–middle θ range for the heavy clay soil, this seems to be consistent with similar
sensors reported in the literature. Sensor drift due to corrosion, or hardware/electronic
issues, can cause sensor response to deviate from the ground truth. Identifying sensor
nodes that are malfunctioning at an early stage is essential for the collection of robust data.
The collected data on liquid standards provide the baseline for QC measurements while
sensors are deployed. Sources of errors associated with suboptimal probe installation were
identified and discussed. Namely, measurement errors were observed when the tines of
the probes were partially exposed to air or air gaps and when the tines were deflected from
their parallel configuration upon installation. The data communication performance of
the network was evaluated in terms of packet drop rate at different ranges and sampling
frequencies. It was noticed that the drop rate increased with the distance from the gateway,
while sampling frequency had no effect. The range provided by the Sense Cap antenna was
found to be small (approximately 500 m) and was significantly improved by upgrading to
a 4.5 dBi LoRa Paradar antenna (approximately 1500 m).

In summary, the Sense Cap soil moisture sensor network evaluated in this study
shows potential for in situ implementation for soil moisture monitoring. The off-the-shelf
all-in-one solution provided is low-cost and user-friendly (easy and fast installation which
does not require specialised training). Standardisation of sensor units is advised to achieve
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robust estimates of θ and improve the analytical performance. Considering all of the
above, the optimal set-up for efficient, accurate and reliable soil moisture networks that can
provide both spatial and temporal resolution should be hybrid and encompass multiple
low-cost nodes accompanied by at least one TDR profiler for validation purposes.
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