Objective
The Objective of this four-year, full-time degree is to produce graduates with a thorough understanding of physics, with an emphasis on modern technological applications, well-developed skills in modern laboratory techniques and the capacity to adapt to new developments.

The courses taught within the degree programme provide substantial specialisation in the following areas:

— Computer programming, mathematics and computational physics
— Electronics and instrumentation
— Lasers, optics, spectroscopy and optoelectronics
— Semiconductor materials, physics, devices and technology

Programme Summary
During the first two years, courses are provided in classical and modern physics as well as in mathematics, electronics and computing. From second year on, in addition to core modules students can choose from a suite of specialist areas including, for example, computational physics, sensors and digital signal processing. There is a strong emphasis on developing practical laboratory skills. Several final year Applied Physics students have received national awards from the Institute of Physics and the Instrument Society of America for their project work. An important element of Applied Physics at DCU is the emphasis placed on project work, report writing, oral presentations and laboratory skills throughout the four-year programme.

Relevant Work Experience
DCU’s work experience programme INTRA (INtegrated TRAining) is a central feature of education at DCU and an integral part of most undergraduate and some postgraduate degree programmes. Students from BSc Applied Physics are eligible to participate in an eight month INTRA placement at the end of third year, from February to September inclusive.

Work Areas
Students from BSc Applied Physics will have the ability to work in the roles listed below:

— Manufacturing
— Process Control
— Optoelectronics
— Medical Physics
— Meteorology
— Education and Training
— Semiconductor Fabrication
— Instrumentation
— IT Support
— Environmental Monitoring
— Energy Sources
— Laboratory Research
— Electronics n Telecommunications
— Software Engineering
— Radiation Protection
— Conservation
— Desk Research Student
Students are available for interview from October onwards. For more information, contact: INTRA Unit, Student Support & Development, DCU, Glasnevin, Dublin 9, Ireland.

T: +353 1 700 8877
E: carol.power@dcu.ie
W: dcu.ie/intra
LinkedIn: in/dcu-intra-office

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Laboratory</td>
<td>Quantum Physics</td>
<td>Core Modules</td>
<td>Core Modules</td>
</tr>
<tr>
<td>Physics 1</td>
<td>Advanced Programming</td>
<td>Quantum Physics II</td>
<td>Introduction to Differential Equats and Apps to Mechanics</td>
</tr>
<tr>
<td>Introduction to Computing</td>
<td>Calculus of Several Variables</td>
<td>Physics Laboratory V</td>
<td>Quantum Electronics</td>
</tr>
<tr>
<td>Inorganic and Physical Chemistry</td>
<td>Digital and Analogue Electronics</td>
<td>Statistical Physics</td>
<td>Electrodynamics</td>
</tr>
<tr>
<td>Mathematics for Physicists</td>
<td>Linear Mathematics</td>
<td>Wave Optics</td>
<td>Applied Spectroscopy</td>
</tr>
<tr>
<td>The Universe</td>
<td>Vibrations and Waves</td>
<td>Optional Modules</td>
<td>Professional Development</td>
</tr>
<tr>
<td>Thermal and Physical Properties of Matter</td>
<td>Electromagnetism</td>
<td>Introduction to Numerical Methods</td>
<td>Final Year Project</td>
</tr>
<tr>
<td>Introduction to Programming</td>
<td>Physics of Renewable Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity and Magnetism</td>
<td>Solid State Particles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory General Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relativity, Nuclear and Particle Physics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTRA