

PostDoc Job Opportunity

	First Name	Last Name	email	Institute	Address
PI name & contact details:	Pascal	Landais	landaisp@eeng.dcu.ie	DUBLIN CITY UNIVERSITY	Glasnevin, Dublin 9, Ireland.
School:	Electronic Engineering				
Research Centre/ group affiliation:	RINCE				
Research group / centre website:	http://www.dcu.ie/info/staff_member.php?query=Pascal+Landais				

Brief summary of research group / centre activity

The primary research activities of my group are: the design, characterisation and applications of lasers and semiconductor optical amplifiers for telecommunications; and Terahertz signal generation and waveguiding.

Description of postdoctoral project on offer:

The focus of this project is to examine the integration of a passively mode-locked quantum dash semiconductor laser (QD-MLL) in a novel fibre-based sensing system. QD-MLLs are a reliable source of short pulses (less than 2-ps) at a high repetition rate (40 GHz). An important feature of such lasers is the presence of a well-defined, highly coherent comb of wavelengths. When such laser radiation interacts with a fiber Bragg grating, only a specific wavelength will be reflected. Any change in the experimental conditions, temperature and/or pressure for instance, experienced by the fibre grating will produce a pulse change which can be monitored. Due to the fast repetition rate, fast phenomena can be detected. In the first part of this project, a study of the simulation of a fibre sensor with a MLL will be carried out, in the second part the physical implementation of the sensor will be achieved.

Please indicate the core skills or disciplines that are required for this position:

Opto-electronics, nanomaterials, optical telecommunications