Senior Cycle Physics – Making an Impact

NCE-MSTL: Jennifer Johnston

Joanne Broggy

Joe Murphy

NCCA: Anna Walshe

Jennifer.Johnston@ul.ie

Teachers Making an Impact

 Teacher as generators of real knowledge about what works in teaching and learning (NCCA, 2009a).

 Network of schools and teachers, learners, NCCA, NCE-MSTL.

Project Aim

To contribute to the draft revised Senior Cycle **Physics** syllabus by designing, implementing and evaluating **teaching and learning** activities that;

- Align with and reflect the teaching and learning approach (Inquiry-Based Learning),
- that embed the 'key skills' and operationalise the learning outcomes,
- probe for a deeper understanding of physics from students.

Draft Revised LC Physics Syllabus

- Consultation Process
- Syllabus Aim
- Key Skills
- Teaching and Learning Approach

Syllabus Aim

- stimulate and sustain interest and enjoyment in physics
- Develop an understanding of fundamental principles underlying physics phenomena
- Illustrating how humanity has benefited from the study and practice of physics (NCCA, 2012)

Project Focus

Asteroids, Impacts and Craters

Learning Outcomes of Scientific methods

Students learn about	Students should be able to
1.1 Application of scienific method	 apply their knowledge and understanding of science to develop arguments or draw conclusions related to both familiar and unfamiliar situations
	 use secondary data sources; locate and comprehend relevant information from books, scientific publications, internet, databases and other resources
	 make judgements and draw informed conclusions pertaining to the reliability and validity of data
	 use observations as the basis for formulating a hypothesis
1.2 Scientific process skills	identify variables and select appropriate controls
	 design, manage and carry out experimental and non-experimental investigations; select appropriate measuring devices; use scales and units accurately, being aware of limitations and errors
	 collect, organise, interpret, present and analyse primary and secondary data
	 describe relationships (qualitatively and/or quantitatively) between sets of data; recognising the difference between causation and correlation
1.3 Societal aspects of scientific evidence	 critically examine the scientific process that was used to present a scientific claim
	appreciate the limitations of scientific evidence

Physics Behind Asteroids, Impacts & Craters

- Energy (conservation of energy)
- Newton's Laws
- Mass, Density, Volume
- Collisions
- Gravity
- Trigonometry

Project Approach

- Action Research
 - Data collected: pre survey, interviews, student written work, classroom observations, video (Class & Workshops), teacher written work.
- Seven Physics teachers invited to participate in this project.
- Senior Cycle students (5th year) studying Physics - target student group.

Workshops

Workshop	Detail
number	
1	Introduction to the project
	Hands-on interactive session – trying out possible activities.
	Informed planning session
	IBL elements
2	Further planning & discussion of teaching and learning
	activities
	Developing assessment activities
In-class	Classroom Implementation
3	Reflection on the project after implementation
	Reflection on the assessment questions developed & further
	development
	Feedback session

What is this? How is it formed?

Findings

- The development of teacher skills in designing, developing and incorporating activities and tasks that embeds the 'key skills' and operationalise the learning outcomes within the Draft Syllabus.
- The students' understanding and 'key skills'
 development of the topics throughout the course
 of the 'Impact and Crater' activities.
- The use of Inquiry Based Learning (IBL)

Findings

Report

Teacher Resource Material

- Tasks and Questions that complement
- the Revised Physics Syllabus
- Professional Development Framework

Acknowledgements

Physics Teachers, students and Schools who participate in this project

www.nce-mstl.ie www.ncca.ie

SMEC June 7th -9th 2012

Project Team - Contact

- Dr. Jennifer Johnston
 - Senior Project Officer Teaching & Learning Physical Sciences
 - jennifer.johnston@ul.ie
- Anna Walshe
 - Education Officer
 - National Council for Curriculum and Assessment (NCCA)
 - anna.walshe@ncca.ie
- Dr. Joanne Broggy
 - Project Officer Teaching & Learning Sciences
 - joanne.broggy@ul.ie
- Mr Joe Murphy
 - Project Officer Teaching & Learning Physics
 - joe.a.murphy@ul.ie

